

BUILDING NANUAL

Table of Contents

PREFACE

ACKNOWLEDGMENT

INTRODUCTION

A-GENERAL p11 - 20

- A1 LIMITATIONS -13
- A2 BUILDING TERMINOLOGY-14
- A3 TERMS AND DEFINITIONS -17
- A4 DETERMINATION OF DESIGN WIND SPEED -20
- A5 CYCLONE DESIGN CRITERIA -20

B-TIMBER FRAMED HOUSES p21 - 82

- B1 GENERAL -23
- B2 ASCERTAINING STRESS GRADE -23
- B3 JOINT GROUPS -23
- B4 NOMINAL FIXINGS -23
- **B5** POSITION OF BEARERS, JOISTS AND NOGGINGS -24
- B6 STIFFENING OF PLATES -25
- **B7** HOUSE TYPES -26
- B8 TIMBER MEMBER SIZES -26
- B9 BRACING -40
- B10 TIE DOWN -55

C-MASONRY HOUSES p83 -103

- C1 TYPES OF HOUSES -85
- C2 MATERIALS AND WORKMANSHIP -86
- C3 WALLS -87

D-FOUNDATIONS p105 -114

- D1 GENERAL -106
- D2 SITE REQUIREMENTS -106
- D3 ANCHOR PILES AND FLOOR PILES -107
- **D4** FOOTINGS -108
- D5 CONCRETE SLAB-ON-GROUND FLOORS -112

E-CONSTRUCTION DETAILS p115 -133

- E2 ROOF CONSTRUCTION DETAILS -116
- E3 WALL CONSTRUCTION DETAILS -122
- E4 FLOOR CONSTRUCTION DETAILS -130

F-HOUSE FAILURES AND PRECAUTIONS p135 -156

- F1 HOW WIND ACTS ON A HOUSE -136
- F2 FOUNDATION FAILURES -138
- F3 BEARER AND JOIST FAILURES -139
- F4 FAILURE OF WALLS -140
- F6 FAILURE OF ROOF CLADDINGS -142
- F7 CARE AND PRECAUTIONS -143
- F8 WHAT CAN GO WRONG IN A CYCLONE AND WHAT TO DO -146
- F9 BRACING AND CONNECTIONS -156

G-MISCELLANEOUS p157 -174

- G1 WINDOW SHUTTERS -158
- G2 LEAN TO HOUSES -162
- G3 LEAN TO GARAGE DETAILS -162
- G4 DETAIL OF STEPS -165
- G5 WINDOW GLASS THICKNESS FOR HOUSES -166
- **G6 RETAINING WALLS** –166
- G7 DRIVEWAY CONSTRUCTION DETAILS -171
- **G8** REINFORCEMENT BAR DETAIL -172
- G9 LOW LIFT METHOD OF GROUTING -174

H-LOW - COST HOUSE DETAIL p175 -186

- H1 LIMITATIONS -176
- H3 ELEVATIONS -177
- H4 FOUNDATION DETAILS -178
- H5 BRACING -179
- H6 MISCELLANEOUS -180
- H7 MEMBER SIZES -183
- **H8** TIE DOWN ----184

APPENDICES p187 -192

- II EXAMPLES -- 190

The introduction of the 1991 Building Code (the Code) and its accompanying Building Manual (the Manual), which this Manual replaces, were a major step forward for the Cook Islands. They empowered the Cook Islands Government through its agencies to ensure buildings comply with prescribed standards. This is significantly important for ensuring the safety of buildings as well as protecting the investment of those constructing them. The 1991 Code and Manual were however, one size fits all documents, prepared in Fiji for a number of Pacific Island Countries (Cook Islands Included), with the only difference between the Code and Manuals from country to country being the name of the country concerned.

In its years of operation, unfortunately however, the Code and also the Manual were largely unknown and inoperative in the Pa Enua, partially due to the lack of building inspectors outside Rarotonga and Aitutaki, which necessitated a wide exemption for residential buildings and partially due to the limited availability of the documents across the Pa Enua. Compliance in respect of Pa Enua residential buildings therefore was voluntary and limited except where compliance was a lending requirement for bank mortgages. The experience of Cyclone Pat in Aitutaki, 2010 clearly illustrated the importance of compliance, as complying houses were only damaged by debris from noncomplying houses.

The increasing frequency and strength of extreme weather events is now a fact of life in the Cook Islands and noncomplying buildings are a hazard. During the period since 1991 not only have new building materials using new technology been developed but also new sources of supply of these materials have come on stream.

The Code and Manual have now been extensively revised in close consultation with traditional leaders; communities; government agencies, including island governments and representatives of the Northern and Southern Group islands, the private sector, including consultant engineers, construction companies, builders, the tourism sector and building suppliers. There was a strong commitment to revising the Code and Manual to fit the Cook Island circumstances and to be fully applicable in the Pa Enua, without significant increases in the cost of building.

With regards to cyclone strengthening, the Code and therefore the Manual secures against cyclone intensity 3. This protection can be increased to cyclone intensity 4 at minimal cost by utilising tiedown procedures developed by the Cook Islands Red Cross. These procedures have accordingly been incorporated into the Code and Manual and the invaluable contribution of the Cook Islands Red Cross to cyclone safety is hereby acknowledged. An effort has also been made to establish ways of continuing to ensure the safety of building materials, with provision for exemptions for local produced timber, particularly in the Pa Enua.

The cost of Code compliance in respect to residential buildings will continue to be minimised by the use of this Manual. A residential building constructed in accordance with this Manual will fully comply with the Code and with tie-downs should withstand an intensity 4 cyclone. The extent and proactive nature of the consultation has enabled the production of a revised set of documents fit for purpose for the Cook Island, with this user-friendly Manual available throughout the Cook Islands to guide and instruct builders in the construction of houses and ensure Code compliance at minimal additional cost.

A manual such as this can only be useful within certain stated limitations. This one is no exception. However within these limitations it should be possible to use the Manual for the construction of safe, architecturally pleasing houses to reasonable levels of individual requirements.

Acknowledgment

The revision of the Cook Islands Building Code and Manual has been carried out under the auspices of Infrastructure Cook Islands (ICI), Minister responsible for Infrastructure Cook Islands, Secretary, Building Controller, senior staff of ICI. The work has been facilitated and Project Managed by several VSA (Volunteer Services Abroad) consultants.

The Wellington, New Zealand, office of BECA International Consultants Ltd as the contractor successful for this project has undertaken the revision of both the Code and the Manual and assisted with the consultation process. Independent consultant Graham Powell of Australia and New Zealand undertook a parallel review of the Act and its Regulations.

The consultation process was strongly supported by other government department officials, the communities and their leaders on all the islands in the Pa Enua, and a number of non-government agencies and organisations. The need for a revision was also discussed and supported by Members of the House of Ariki. Both the Cook Islands Building Code and Cook Islands Building Manual were endorsed by Cabinet and approved for the review of the Building Act 1990.

The Government of the Cook Islands is humbly grateful for the funding of the review provided to Emergency Management Cook Islands by the following donors partners; Secretariat of Pacific Communities, European Union, ACP-EU Building Safety and Resilience in the Pacific.

OBJECTIVE

The Manual is intended for the use of para-professionals and professionals in the building industry for the speedy design of simple houses which conforms to the structural requirements of the National Building Code. Approval authorities may use the Manual for the confirmation of the adequacy of the structural details given in the proposals submitted to them. The use of the Manual is subject to the limitations stated in Clauses Al and Cl and C2.

WHAT IS IN THE MANUAL?

The Manual gives simple directions and limitations in Section A and the design windspeed applicable to all likely locations of houses. Section B gives several tables and diagrams based on the design windspeed to facilitate the design of timber framed houses and parts of houses. Section C does the same for masonry houses. Section D gives foundation details for both timber and masonry houses. Typical construction details are shown in Section E. Possible modes of failure of houses during cyclones are illustrated in Section F. These diagrams also explain how to prevent such damage.

Miscellaneous details such as for the design of window shutters, retaining walls, lean-to houses, window glass selection, etc. are given in Section G. Section H gives some details for the construction of low-cost houses. The room sizes in this section are kept small enough to avoid the use of purlins for the roof. The small sizes also permit the use of partially grouted masonry wall which will resist the applicable forces. The Manual ends with an Appendix giving the design criteria used, typical calculations and details of timber classifications.

HOW TO USE THE MANUAL?

The several tables and diagrams might seem quite daunting to begin with. Simple flowcharts are included in the Manual to guide the new user.

Knowledge of the following basic information is necessary in order to use the Manual:

i) The stress grades of the available timber. Where this information is not provided by the supplier or stamped on the pieces of timber an assessment of the stress grade can be made by using Table B2. However in order to use this table, sufficiently reliable information on the density of the timber must be available.

ii) A knowledge of the joint groups of different timber species used is required for designing bracing and/or tie-down systems. There is no simple relationship between joint groups and other basic properties such as density. Therefore where the joint group is not known advice must be sought from the Department of Forestry or a conservative estimate made.

Where manufacturers of proprietary products are able to give test-based information on their products it may be used with the appropriate tables in the Manual.

FORMAT OF THE MANUAL

The Manual has been prepared with plenty of diagrams and tables and a minimum of text. These should convey the intent far more easily than words.

HOW TO USE THIS MANUAL

A1 LIMITATIONS

There is unlimited possibility for variation in the design and erection of houses. Site conditions, choice of materials, size, layout, location and a host of other factors can all vary. No manual can provide detailed information to cover all such variations. This manual is no exception. The following limitations therefore apply to the houses for which details are given:

- (a) Plan rectangles or simple combinations of rectangles.
- (b) Height not more than 6 m to eaves.
- (c) Width not to exceed 9 m inclusive of covered verandahs but excluding eaves.
- (d) Eaves Overhang limited to 900 mm.
- (e) Roof Pitch 25° maximum.
- (f) Bracing Wall Spacing:

i) Must not exceed 5 m for timber framed houses or storeys.

ii) Must not exceed 5 m for masonry houses or storeys except as explained in Clause C3.6 and Figure C3.6.

- (g) Roof construction must be of a simple beam and rafter type with lightweight roof cladding.
- (h) Rafter Spacing limited to 900 mm, 1200 mm and 1560 mm.
- (i) For masonry houses the floor area per storey must not exceed:

i) 600 m2 for single storey houses

ii) 200 m2 for two-storey houses or a single storey supported on foundation walls; and lower storey of masonry supported on a concrete slab-on-ground, or footings of concrete or masonry.

(j) Windows MUST be protected from debris by means of shutters such as those shown in Figure G1.1.

A2 BUILDING TERMINOLOGY

Figures A2.1, A2.2 and A2.3 illustrate the various members and components of timber framed and masonry houses.

FIGURE A2.1: GENERAL FRAMING DETAILS FOR TIMBER HOUSES

- 3.
- 4. Common Raiter
- 5 Jack Rafter
- 8.
- 9.
- Valley Rafter Ridgeboard 10.
- 11. Underpurlin
- 14.
- 15.
 - 16. Barge or verge Rafter

FIGURE A2.2: ROOF FRAMING DETAILS

FIGURE A2.3: GENERAL CONSTRUCTION DETAILS FOR MASONRY HOUSES

A3 TERMS AND DEFINITIONS

The following technical words found in the Manual have been used with the specific meaning given against each.

BEARER	a beam supported on foundation walls, piles, or piers and carrying floor joists.
BLINDING	a base course of compacted granular material or lean concrete to provide an even surface on which construction can proceed
BOND, RUNNING	the bond when the units of each course of masonry overlap the units in the preceding course by 50% of the length of the units.
BRACE	
	<i>Diagonal Brace</i> —a member of a framed house fixed diagonally and used to resist tension or compression or both.
	Subfloor Brace—a bracing element below the ground floor level.
	<i>Wall Bracing</i> —a section of wall above the ground level which performs a bracing function.
BRACING	any method employed to provide lateral support to a house.
	<i>Bracing Line</i> —a line along or across a house for controlling the distribution of wall bracing elements.
	<i>Bracing Unit</i> —a measure of the performance of a wall bracing element. (100 BU's = 5 kN)
	Bracing Panel (Bracing Wall)—a length of structural wall which is designed to resist the racking effects produced by lateral forces resulting from earthquakes or high winds. The capacity of a bracing panel to resist racking may be expressed in bracing units.
CALL DIMENSIONS	the dimensions by which timber is sold. These are usually marginally different from the actual dimensions.
CLADDING	the outside or exterior weathering surface of a house.
COLLAR TIE	a member connecting paired rafters together below the level of the ridge board in a roof.
D	refers to a deformed mild steel reinforcing bar of the stated diameter in millimetres.
DAMP-PROOF COURSE	durable water-proof material placed between masonry, stone or concrete and timber or metal as a protection against moisture; or placed between block or stone courses to prevent the passage of moisture from a lower part of the structure to an upper part bearing on it.
DRAGON TIE	a timber member fixed diagonally between two intersecting top plates to tie two walls together.
FOOTING	construction through which the weight of a house is transferred to the ground.
FOUNDATION	those parts of a house in direct contact with, and transmitting and distributing loads to the ground through a footing.
FRAMING TIMBER	timber members to which lining, cladding, or decking is attached, which are depended upon for supporting the structure and for

	resisting forces applied to it.
GABLE	the triangular part of an outside wall between the planes of the roof and the line of the eaves
GROUT	the material used to fill cells or cavities in reinforced masonry.
JOINT GROUP	a group assigned to a piece or parcel of timber to indicate for purposes of joint design a set of basic working loads appropriate to that timber. Joint group is designated in the form of a number preceded by the letters J or JD indicating unseasoned or seasoned timber respectively.
JOIST	a horizontal framing member to which is fixed floor decking or ceiling linings and which is identified accordingly as a floor joist or ceiling joist.
LINTEL	a structural member over an opening in a wall to take the vertical downward and lateral loads above the opening and to transfer them to other structural members on either side of the opening.
Μ	refers to a bolt of the stated diameter in millimetres.
MASONRY	any construction using concrete blocks, laid to a bond and joined together with mortar.
MORTAR	the material in which masonry units are bedded and joined together.
NOGGING	a short member fixed between framing timbers.
NOTCH	trench or groove formed across the face of a piece of timber.
PILE	a column-like member used to transmit loads from the house and its contents to the ground.
	Anchor Pile —a pile directly supporting a bearer, loadbearing walls and roof structures, which is embedded into the ground with concrete so as also to resist vertical uplift and horizontal forces.
	<i>Braced Anchor Pile</i> —an anchor pile directly supporting a bearer and having a brace attached to it.
	<i>Floor Pile</i> —a pile that does not have any brace attached to it and that is required to support one floor only but not load bearing walls.
PLATE	a timber member supported by a wall or bearers or joists to support and distribute the load from floors, walls, roofs or ceiling.
	Bottom Plate—a plate placed under the ends of studs.
	<i>Top Plate</i> —a plate placed over the ends of studs.
PURLIN	a horizontal member laid to span across rafters and to which the roof cladding is attached.
R	refers to a plain round reinforcing bar of the stated diameter in millimetres.
RAFTER	a framing timber normally parallel to the slope of the roof and providing a support for purlins, roof covering or sarking.
REINFORCEMENT	any form of reinforcing rod, bar, or welded fabric mesh used with concrete or masonry.
REINFORCED MASONRY	any masonry in which reinforcing steel is so bedded and bonded that the two materials act together in resisting forces.

ROOF	that surface of a house intended to shelter any other part, or any space below it, against the elements, and in particular to discharge rainwater outside the confines of the house or space below.
SEASONED TIMBER	timber brought to a state of equilibrium moisture content. Equilibrium moisture content is the moisture content at which timber neither gains nor loses any moisture under constant conditions of temperature and humidity.
SPACING	the distance at which members are spaced measured centre to centre.
SPAN	the clear distance between supports measured along the member.
STRESS GRADE	a value assigned to a piece of timber to indicate, for purposes of structural design, the set of basic stresses appropriate to that piece. Stress grade is designated in the form of a number preceded by the letter 'F'.
STRINGER	a horizontal framing timber on edge fixed to the side of a concrete or masonry wall to support the ends of joists or rafters.
STRUTTING	short members fixed between joists to stiffen and prevent them from canting or buckling.
STUD	vertical timber, forming part of a wall or partition on to which cladding may be fastened.
	Loadbearing Stud—a stud in a loadbearing wall.
	<i>Trimming Stud</i> —a stud located on the side of an opening.
	<i>Jack Stud</i> —a stud of shorter height than the height from top plate to bottom plate of the wall.
THICKNESS	unless otherwise specifically stated means the call dimension representing the narrow surface of a piece of timber (see also WIDTH)
VAPOUR BARRIER	sheet material through which only very little water vapour can pass. This is used to minimise water vapour penetration in houses.
WALL	
	External Wall—an outer wall of a house.
	<i>Foundation Wall</i> —that part of the foundation comprising a masonry or concrete wallsupporting a house or part of a house, and not extending more than 2.0 m above the underside of the footing.
	Internal Wall—a wall other than an external wall, a partition.
	<i>Loadbearing Wall—</i> a wall supporting vertical loads from floors, ceiling joists, roof, or any combination of these.
	Non Loadbearing Wall—a wall other than a loadbearing wall.
	<i>Structural Wall</i> —any wall which because of its position and shape is designed to contribute to the rigidity and strength of the house.
WEATHER BOARDING	an exterior overlapping timber strip cladding which is fixed either horizontally, vertically or diagonally, whether rough sawn or machined or formed to any special section.
WIDTH	unless otherwise specifically mentioned means the call dimension representing the wide surface of a piece of timber.

A4 DETERMINATION OF DESIGN WINDSPEED

The design winds peed for residential dwellings (Class 1 and 10 Buildings) in the Cook Islands is 49 m/s.

A5 CYCLONE DESIGN CRITERIA

The Cook Islands are susceptible to cyclones across all of the islands. The effects of cyclone winds on a residential dwelling are twofold. Firstly, the the overall buildings capacity to withstand the lateral wind forces on it. Insufficient lateral structure can cause significant damage to the total building structure. Secondly are the localized suction forces on the roof material. Lack of a strong connection can lead to roofing material being blown off of the building.

Critical aspects to consider during residential house construction are therefore:

(a) Good distribution of bracing in the walls throughout the house. These walls can either be reinforced masonry walls, or braced timber walls as per Section B of this manual.

b) Strong connections from the roofing material all the way down to the foundations. This requires solid connection of the roof material to the roof joists, from the roof joists to the main house frame and from the main frame to the foundations.

Category 3 Cyclones

The design requirements and construction details provided in this Home Building Manual are produced to the design wind speed for a Category 3 cyclone. By following the details shown throughout this manual therefore, the risk of damage to a domestic dwelling will be significantly reduced.

Category 4 Cyclones

The construction details provided in this Home Building Manual may not be sufficient to withstand the wind loads resulting from a Category 4 cyclone. In this instance, we would recommend adding supplementary tie-down strapping to the roof of a house.

Recommended detail for these tie-down details are given in the appended Red Cross manual 'The Tautu Roof Tie-Down Model Instructions Booklet'.

The recommendation is to have the tie-down straps at no greater than 2 m apart, and at a minimum of 500 mm from the edge of the roof. For a typical house, this would result in four straps across the width of the roof.

Category 5 Cyclones

In the event of a Category 5 cyclone being forecast, the recommended course of action is to **take shelter in a purpose built and design cyclone shelter,** designed to protect the life safety of the local communities. Residential houses are unlikely to provide safe refuge and should not be occupied during a category 5 cyclone.

In this instance, damage to residential buildings can potentially be mitigated through equalisation of pressures between the inside and outside of a house. This can be accomplished through fixing open windows and doors throughout the building and removing and or protecting the internal fixtures, fittings and furniture.

Section B TIMBER FRAMED HOUSES

B1 GENERAL

All timber members must be sized in accordance with Tables 1 to 20 as appropriate for the member, stress grade, and design situation. Care must be taken to ensure that the correct tables are used for the appropriate design wind speeds.

B2 ASCERTAINING STRESS GRADE

Many of the tables in the Manual are based on a knowledge of the stress grade (see definition) of the timber used. Where timber is not stress graded mechanically or visually the approximate stress grade can be determined from the density of the timber. Table B2 gives these approximate values for different timber densities whether of softwood or hardwood. These values may be used in the absence of more precise information, to refer to all the other tables to use which the relevant stress grade is required.

TABLE B2:

RELATIONSHIP BETWEEN DENSITY, STRENGTH GROUP AND STRESS GRADE

	The second se	NSENSUN	ED I IMDE	nə			
MINIMUM DENSITY VALUES AT 12 PERCENT MOISTURE CONTENT	1180	1030	900	800	700	600	500
STRENGTH GROUP	S1	S2	S 3	S4	S5	S6	S7
STRESS GRADE	F17	F14	F11	F8	F7	F5	F4*

INSEASONED TIMBERS

SEASONED TIMBERS

MINIMUM DENSITY VALUES AT 12 PERCENT MOISTURE CONTENT	1200	1080	960	840	730	620	520	420
STRENGTH GROUP	SD1	SD2	SD3	SD4	SD5	SD6	SD7	SD8
STRESS GRADE	F27	F22	F17	F14	F11	F8	F7*	F5*

* Not applicable to hardwood timbers.

B3 JOINT GROUPS

A knowledge of the value of the joint group (see definition) of each timber member at any mechanical joint is required for the use of tables that relate to Clauses B9 and B10. When this information is not readily available, it will be necessary to seek the guidance of the Department of Forestry or some other reliable source of Information.

B4 NOMINAL FIXINGS

The minimum diameter of nails for use in nominal fixings must be 3.15 mm plain shank for hardwood, and 3.75 mm plain shank or 3.15 mm deformed shank for softwood. The minimum depth of penetration of nail into the final receiving member must be 10 times the nail diameter where driven into side grain and 15 times the nail diameter where driven into end grain. Not less than two nails must be provided at each joint unless shown otherwise in this Manual.

B5 POSITION OF BEARERS, JOISTS AND NOGGINGS

B5.1 Allowable offsets for Bearers

PERMISSIE	LE CANTILEVERS AND OFFSETS FOR E UNDER LOADBEARING WALLS	EARERS AND JOISTS		
Depth of Member (mm)	Maximum permissible cantilever as proportion of span (%)	Maximum permissible offset of internal loadbearing walls as proportion of span (%)		
	Light Roof *	Light Roof *		
< 125	10	20		
125 - 200	15	30		
201 - 275	17.5	35		
> 275	20	37.5		

* eg. metal sheet roofing.

FIGURE B5.1: CANTILEVERS AND OFFSETS

B5.2 Position of Noggings

NOTE: The value of 'x' must not exceed 1350 mm. **FIGURE B5.2: POSITION OF NOGGINGS**

B6 STIFFENING OF PLATES

FIGURE B6: LOCAL STIFFENING OF PLATES

B7 HOUSE TYPES

FIGURE B7: HOUSE TYPES

A high-set house is an elevated house with a clear, unwalled space underneath the first floor level, with a height from ground to underside of floor of at least one-third of the total height of the house.

B8 TIMBER MEMBER SIZES

B8.1 General

The following sets of tables provide the sizes of timber members corresponding to the design windspeed given in clause A4. The tables are numbered 1 to 20 and each table contains the member size for the various components of a timber framed house.

The tolerances permitted for the sizes given in the tables are as follows:

- for unseasoned timber of stress grades F4 to F7, not greater than 4 mm under the call dimension

- for other unseasoned timber, not greater than 3 mm under the call dimension
- for seasoned timber, negative tolerance is not permitted.

B 8.2

All timber dimensions are expressed with the value for depth first followed by that for the width. For example a purlin shown in any table as 50×75 means that it is laid flat with 50 mm depth and 75 mm width. If the reference is to 75×50 , then the depth is 75 mm and width 50 mm.

B8.3 Application

To determine the member size to be used, the following steps need to be followed.

1. Select the table that corresponds to the member under consideration.

2. Determined the options to be used from those given in the tables (e.g. spacing, span, height, stress grade of timber, seasoning of timber, etc.).

3. Select the member size.

B8.4 Tables for Timber Members

The following list gives the table numbers for the various timber members of a house.

Table 1	BEARERS SUPPORTING SINGLE OR UPPER STOREY LOADBEARING WALLS
Table 2	BEARERS SUPPORTING FLOOR JOISTS ONLY
Table 3	FLOOR JOISTS
Table 4	STUDS - SINGLE OR UPPER STOREY
Table 5	STUDS AT SIDES OF OPENINGS
Table 6	STUDS - INTERNAL LOADBEARING WALLS
Table 7	TOP PLATES - SINGLE OR UPPER STOREY
Table 8	BOTTOM PLATES - SINGLE OR UPPER STOREY
Table 9	LINTELS - SINGLE OR UPPER STOREY
Table 10	RAFTERS
Table 11	PURLINS
Table 12	VERANDAH POSTS
Table 13	BEARERS SUPPORTING TWO STOREY LOADBEARING WALLS
Table 14	STUDS - LOWER STOREY O F TWO STOREYS
Table 15	STUDS - INTERNAL WALLS - LOWER STOREY O F TWO STOREYS
Table 16	STUDS AT SIDES OF OPENINGS - LOWER STOREY OF TWO-STOREY CONSTRUCTION
Table 17	TOP PLATES - LOWER STOREY O F TWO STOREYS
Table 18	BOTTOM PLATES - LOWER STOREY WALLS
Table 19	LINTELS - LOWER STOREY OF TWO STOREYS

Table 20ROOF BEAMS - NON-TRAFFICABLE ROOFS

BEARERS SUPPORTING SINGLE OR UPPER STOREY LOADBEARING WALLS MAXIMUM BUILDING WIDTH: 9000 MM

BEARER	ARER BEARER ACING SPAN UNSEASONED						SEASONED			
(mm)	(mm)	F4	F5	F7	F8	F4	P5	F7	F8	
	1500	150 x 75	150 x 75	125 x 75	125 x 75	140 x 70	120 x 70	120 x 70	120 x 70	
	1800	175 x 75	175 x 75	150 x 75	150 x 75	170 x 70	140 x 70	140 x 70	120 x 70	
	2100	200 x 75	200 x 75	175 x 75	175 x 75	190 x 70	170 x 70	170x 70	140 x 70	
	2400	225 x 75	225 x 75	200 x 75	200 x 75	220 x 70	190 x 70	170 x 70	170 x 70	
1800	2700	250 x 75	250 x 75	225 x 75	225 x 75	240 x 70	220 x 70	190 x 70	190 x 70	
	3000	275 x 75	275 x 75	250 x 75	250 x 75		240 x 70	220 x 70	220 x 70	
	3300	300 x 75	300 x 75	275 x 75	275 x 75	d to end of	-	240 x 70	240 x 70	
	3600			300 x 75	300 x 75	10.2000	1.1.1	1.00	240 x 70	
	1500	175 x 75	150 x 75	150 x 75	150 x 75	170 x 70	140 x 70	120 x 70	120 x 70	
	1800	200 x 75	175 x 75	175 x 75	175 x 75	190 x 70	170 x 70	140 x 70	120 x 70	
	2100	225 x 75	200 x 75	200 x 75	200 x 75	220 x 70	190 x 70	170 x 70	140 x 70	
	2400	250 x 75	225 x 75	225 x 75	225 x 75	240 x 70	220 x 70	170x 70	170 x 70	
3600	2700	275x 75	250 x 75	250 x 75	250 x 75		240 x 70	190 x 70	190x 70	
1000	3000	300 x 75	275 x 75	275 x 75	275 x 75	0.1.2471	1	220 x 70	220 x 70	
	3300		300 x 75	300 x 75	300 x 75	100.00		240 x 70	240 x 70	
	3600							*		

TABLE 2

BEARERS SUPPORTING FLOOR JOISTS ONLY

BEARER SPACING (mm)	BEARER SPAN	UNSEASONED SEASONED						ONED	ED	
	(mm)	F4	F5	F7	F8	F4	F5	F7	F8	
	1500	125 x 75	125 x 75	100 x 75	100 x 75	120 x 70	120 x 70	120 x 70	90 x 70	
	1800	150 x 75	125 x 75	125 x 75	125 x 75	140 x 70	140 x 70	120 x 70	120 x 70	
	2100	175 x 75	150 x 75	150 x 75	150 x 75	170 x 70	170 x 70	140 x 70	140 x 70	
	2400	200 x 75	175 x 75	175 x 75	175 x 75	190 x 70	170 x 70	170 x 70	170 x 70	
1800	2700	225 x 75	200 x 75	200 x 75	200 x 75	220 x 70	190 x 70	190 x 70	170 x 70	
	3000	250 x 75	225 x 75	200x75	200 x 75	240 x 70	220 x 70	220 x 70	190 x 70	
	3300	275 x 75	250 x 75	225 x 75	225 x 75		240 x 70	240 x 70	220 x 70	
1	3600	300 x 75	250 x 75	250 x 75	250 x 75			240 x 70	240 x 70	
	1500	150 x 75	125 x 75	125 x 75	125 x 75	140 x 70	120 x 70	120 x 70	120 x 70	
	1800	175 x 75	150 x 75	150 x 75	125 x 75	170x 70	170 x 70	140 x 70	120 x 70	
	2100	200 x 75	175 x 75	150 x 75	150 x 75	190x 70	170 x 70	170 x 70	140 x 70	
	2400	225 x 75	200 x 75	175 x 75	175 x 75	220 x 70	220 x 70	190 x 70	170 x 70	
2400	2700	250 x 75	225 x 75	200 x 75	200 x 75	240 x 70	240 x 70	220 x 70	190 x 70	
	3000	275 x 75	250 x 75	225 x 75	225 x 75		240 x 70	220 x 70	220 x 70	
	3300	300 x 75	275 x 75	250 x 75	250 x 75		1	240 x 70	240 x 70	
	3600	•	300 x 75	275 x 75	250 x 75			6 H • 5 1	1.54	
	1500	175 x 75	150 x 75	125 x 75	125 x 75	170 x 70	140 x 70	120 x 70	120 x 70	
	1800	200 x 75	175 x 75	150 x 75	150 x 75	190 x 70	170 x 70	140 x 70	120 x 70	
	2100	225 x 75	200 x 75	175 x 75	175x 75	220 x 70	190 x 70	170 x 70	140 x 70	
	2400	250 x 75	225 x 75	200 x 75	175 x 75	240 x 70	220 x 70	190 x 70	170 x 70	
3000	2700	275 x 75	250 x 75	225 x 75	200 x 75	1.1.1	240 x 70	220 x 70	190 x 70	
	3000	300 x 75	275 x 75	250 x 75	225 x 75			220 x 70	220 x 70	
	3300		300 x 75	275 x 75	250 x 75			240 x 70	240 x 70	
	3600			300 x 75	275 x 75			1000		

FLOOR JOISTS JOISTS SPACING: 450 MM CENTRES

MAX. SPAN SPAN (mm) TYPE	SPAN		UNSEA	SONED		SEASONED				
	TYPE	F4	F5	F7	F8	F4	F5	F7	F8	
	SINGLE	125 x 40	125 x 40	125 x 40	125 x 40	120 x 35	120 x 35	120 x 35	120 x 35	
1800	CONT.	125 x 40	100 x 50	100 x 50	100 x 50	120 x 35	120 x 35	90 x 45	90 x 45	
and the	SINGLE	150 x 40	125 x 50	125 x 50	125 x 40	140 x 35	120 x 45	120 x 45	120 x 35	
2100	CONT.	125 x 40	125 x 40	125 x 40	125 x40	120 x 35	120 x 35	120 x 35	120 x 35	
	SINGLE	150 x 50	150 x 40	150 x 40	125 x 50	140 x45	140 x 45	140 x 35	120 x 45	
2400	CONT.	150 x 40	125 x 50	125 x 50	125 x 40	140 x 35	120 x 45	120 x 45	120 x 35	
	SINGLE	175 x 40	150 x 50	150 x 50	150 x 50	190 x 35	190 x 35	140 x 45	140 x 45	
2700	CONT.	15C x 50	150 x 40	150 x 40	125 x 50	140x45	140 x 35	140 x 35	120 x 45	
Cherry I.	SINGLE	175 x 50	175 x 40	175 x 40	175 x 40	190 x 35	190 x 35	190 x 35	190 x 35	
3000	CONT.	150 x 50	150 x 50	150 x 40	150 x 40	190 x 35	140 x 35	140 x 35	140 x 35	
6.7mm-6	SINGLE	175 x 50	175 x 50	175 x 50	175 x 50	190 x 35	190 x 35	190 x 35	190 x 35	
3300	CONT.	175 x 50	175 x 50	150 x 50	150 x 50	190 x 35	190 x 35	190 x 35	140 x 45	
-	SINGLE	200 x 50	200 x 40	175 x 50	175 x 50	240 x 35	240 x 35	190 x 35	190 x 35	
3600	CONT.	200 x 50	200 x 40	150 x 50	150 x 50	240 x 35	240 x 35	190 x 35	190 x 35	

NOTES:

i. The sizes given apply only where roof loads are supported within the allowable offset distance for the joists.

ii. Where roof loads occur outside the allowable offset, floor joists must be strengthened by placing a double joist, one size greater than the appropriate tabled value, at the points where roof loads are transferred to the floor.

iii. For spans greater than 2400 mm, a floor joist size used at the maximum span given by the table may exhibit excessive "bounce". To avoid excessive "bounce", joists may be one size greater than the tabled values

STUDS - SINGLE OR UPPER STOREY EXTERNAL WALLS INCLUDING GABLE ENDS

STUD	STUD		UNSEA	SONED		SEASONED			
(mm)	(mm)	F4	F5	F7	F8	F4	F5	F7	F8
	2400	100 x 40	100 x 40	75 x 50	75 x 40	90 x 35	90 x 35	70 x 45	70 x 45
450	2700	100 x 40	100 x 40	100 x 40	100 x 40	90 x 45	90 x 35	90 x 35	90 x 35
	3000	100 x 50	100 x 50	100 x 40	100 x 40	90 x 70	90x 70	90 x 45	90 x 45
	2400	100 x 40	100 x 40	100 x 40	100 x 40	90 x 45	90 x 35	90 x 35	90 x 35
600	2700	100 x 50	100 x 50	100 x 40	100 x 40	90 x 70	90 x 70	90 x 45	90 x 35
	3000	100 x 75	100 x 75	100 x 50	100 x 50	90 x 90	90 x 70	90 x 70	90 x 70
	2400	100 x 50	100 x 40	100 x 40	100 x 40	90 x 70	90 x 70	90 x 45	90 x 35
750	2700	100x 75	100 x 75	100 x 50	100 x 40		90 x 70	90 x 70	90 x 45
	3000	100 x 100	100 x 75	100 x 75	100 x 75		- · · · ·	90 x 70	90 x 70
	2400	100 x 75	100 x 50	100 x 40	100 x 40	90 x 70	90 x 70	90 x 45	90 x 45
900	2700	100 x 75	100 x 75	100 x 75	100 x 50		90 x 70	90 x 70	90 x 70
	3000	10.21		100 x 75	100 x 75		1.11.2	1.1.1	

NOTES:

i. Larger sizes may be made up from smaller sections, i.e. 2/100 x 50 equals a 100 x 100.

ii. Studs supporting concentrations of load from beams and the like must be doubled common studs.

iii. No allowance has been made for notching.

TABLE 5

STUDS AT SIDES OF OPENINGS

STUD	OPENING WIDTH		UNSEA	SONED		SEASONED			
(mm)	(mm)	F4	FS	F7	F8	F4	F5	F7	F8
	900	100 x 50	100 x 40	100 x 40	100 x 40	2/90 x 35	90 x 45	90 x 35	90 x 35
2400	1200	2/100 x 40	100 x 50	100 x 40	100 x 40	2/90 x 35	90 x 45	90 x 45	90 x 35
2400	1500	2/100 x 40	2/100 x 40	100 x 50	100 x 40	2/90 x 35	2/90 x 35	90 x 45	90 x 45
1	1800	2/100 x 40	2/100 x 40	100 x 50	100 x 40	2/90 x 35	2/90 x 35	2/90 x 35	90 x 45
	900	2/1 00 x 40	100 x 50	100 x 40	100 x 40	2/90 x 35	2/90 x 35	90 x 45	90 x 45
0700	1200	2/100 x 40	2/100 x 40	100 x 50	100 x 40	2/90 x 35	2/90 x 35	2/90 x 35	90 x 45
2700	1500	2/100 x 40	2/100 x 40	2/100 x 40	100 x 50	2/90 x 45	2/90 x 35	2/90 x 35	2/90 x 35
	1800	2/100 x 50	2/100 x 40	2/100 x 40	100 x 50	2/90 x 45	2/90 x 45	2/90 x 35	2/90 x 35

STUD SPACING (mm)	STUD		UNSEASONED				SEASONED			
(mm)	(mm)	F4	F5	F7	F8	F4	F5	F7	F8	
1000	2400		75	x 40		70 x 35				
	2700	100 x	40	75	75 x 50		90 x 35			
	3000		100	x40		90 x 45			90x35	
450 L	3300		100	x50		90 x 70			90x45	
	3600		100	x75			90 x 90		90 x 70	
	3600 100 x 75 90 x 90 3900 2/100 x 50 100 x 75 - 4200 - 2/100 x 50 -	- 903								
	4200	· 1		2/100 x 50				SONED F7 x 35 70 x 35 90 x 35 90 x 45 90 x 70		
1	2400	75 x	75 x 50 75 x 40				70 x 45 70 x 35			
	2700		100	x 40		90 x 45	90 x 35			
	3000	100 x	50	100	x 40	90 x 70		90 x 45		
600	3300	100 x	75	100	x 50			90 x 70	12.00	
	3600	2/100 x 50	100 x 75						90 x 90	
	3900			2/100 x 50						
	4200			•						

STUDS - INTERNAL LOADBEARING WALLS

NOTES:

i. Internal studs supporting concentrations of load from roof beams must be double the common stud taken from the above table.

ii. Studs are assumed to be not notched.

TABLE 7

TOP PLATES - SINGLE OR UPPER STOREY

BUILDING	RAFTER SP ACING	UNSEASONED				SEASONED			
(mm)	(mm)	F4	F5	F7	F8	F4	PS	F7	F8
		75 x 75	75 x 75 50 x 75			70 x	70 x 90 45 x 70		
7500	900		50	x 100	-	70 x 90		F7 45 x 45 x 90 45 x	
9000		75 x 75		50	x 75	70 x	70 x 70 4		x 70
	900	75 x 100		50 x 100		70 x 90		45 x 90	

TABLE 8

BOTTOM PLATES - SINGLE OR UPPER STOREY

BUILDING WIDTH (mm)	RAFTER		UNSEA	SONED		SEASONED			
	(mm)	F4	F5	F7	F8	F4	F5	F7	F8
	900	75 x	75 x 75 50 x 75			70 x 90			
7500		900 50 x 100			70 x 90	45 x 90			
			75 x 75			70 x 70			
9000	900	75 x 100	1000	50 x 100		70 x 90		45 x 90	

NOTES: Bottom plates fully supported by solid noggin or a concrete slab may be a minimum of 45 x 70 mm.

BUILDING OPENING WIDTH WIDTH UNSEASONED (mm) (mm) F4 F5 F7 F8 100 x 50 900 150 x 50 125 x 50 125 x 50 150 x 50 1200 6000 150 x 50 125 x 50 1500 175 x 50 150 x 50 1800 175 x 50 150 x 50 125 x 50 900 175 x 50 150 x 50 125 x 50 1200 200 x 50 9000 1500 175 x 50 200 x 50 150 x 50 1800 225 x 50 200 x 50 175 x 50

LINTELS - SINGLE OR UPPER STOREY

RAFTER TABLES

FIGURE: B8.3.1

TABLE B8.3.1:

APPROPRIATE TABLE	ASPECT RATIO	ROOF PITCH α
10 - 1	0.25 0.5 1.0	15º, 20º, 25º 20º, 25º 25º
10 - 2	0.25 0.5 1.0	10° 15° 20°
10 - 3	0.5 1.0	10º 15º
10-4	1.0	109

APPROPRIATE TABLES FOR RAFTERS

NOTES: Span of rafter is measured along the length of the rafter.

ASPECT RATIO	ROOF PITCH
h/d	(degrees)
0.25	15 20 25
0.5	20 25
1.0	25

TABLE 10-1

RAFTERS

RAFTER SPACING	SPAN		UNSEA	SONED		SEASONED			
(mm)	(mm)	F4	P5	F7	F8	F4	F5	F7	F8
900	3000	175 x 50	150 x 50	150 x 50	150 x 50	170 x 45	140 x 45	140 x 45	120 x 45
	3600	175 x 50	175 x 50	175 x 50	175 x 50	170 x 45	170 x 45	140 x 45	140 x 45
	4200	225 x 50	200 x 50	200 x 50	200 x 50	190 x 45	170 x 45	170 x 45	170 x 45
	4800	250 x 50	225 x 50	225 x 50	200 x 50	220 x 45	220 x 45	190 x 45	190 x 45
	5400	275 x 50	250 x 50	250 x 50	225 x 50	240 x 45	220 x 45	220 x 45	220 x 45
	3000	175 x 50	175 x 50	150 x 50	150 x 50	170 x 45	170 x 45	140 x 45	140 x 45
	3600	200 x 50	200 x 50	200 x 50	175 x 50	190 x 45	170 x 45	170 x 45	170 x 45
1200	4200	225 x 50	225 x 50	225 x 50	200 x 50	220 x 45	190 x 45	190 x 45	170 x 45
1.0413	4800	275 x 50	250 x 50	250 x 50	225 x 50	240 x 45	220 x 45	220 x 45	220 x 45
	5400	300 x 50	275 x 50	275 x 50	250 x 50	270 x 45	240 x 45	240 x 45	220 x 45
	3000	200 x 50	175 x 50	175 x 50	150 x 50	190 x 45	170 x 45	140 x 45	140 x 45
10.11	3600	225 x 50	200 x 50	200 x 50	200 x 50	220 x 45	190 x 45	170 x 45	170 x 45
1500	4200	250 x 50	250 x 50	225 x 50	225 x 50	240 x 45	220 x 45	190 x 45	190 x 45
	4800	275 x 50	275 x 50	275 x 50	250 x 50	270 x 45	240 x 45	220 x 45	220 x 45
	5400		300 x 50	300 x 50	275 x 50		270 x 45	270 x 45	240 x 45

ASPECT RATIO h/d	ROOF PITCH (degrees)
0.25	10
0.5	15
1.0	20

TABLE 10-2

RAFTERS

RAFTER	SPAN	1.5.00	UNSEA	SONED		SEASONED			
(mm)	(mm)	F4	F5	F7	F8	F4	F5	F7	F8
	3000	175 x 50	150 x 50	150 x 50	150 x 50	170 x 45	140 x 45	140 x 45	120 x 45
	3600	175 x 50	175 x 50	175 x 50	175 x 50	170 x 45	170 x 45	140 x 45	140 x 45
900	4200	225 x 50	200 x 50	200 x 50	200 x 50	190 x 45	170 x 45	170 x 45	170x 45
201	4800	250 x 50	225 x 50	225 x 50	200 x 50	220 x 45	220 x 45	190 x 45	190x45
	5400	275 x 50	250 x 50	250 x 50	225 x 50	270 x 45	220 x 45	220 x 45	220 x 45
	3000	175 x 50	175 x 50	150 x 50	150 x 50	170 x 45	170 x 45	140 x 45	140 x 45
1.1	3600	200 x 50	200 x 50	200 x 50	175 x 50	220 x 45	170 x 45	170 x 45	170 x 45
1200	4200	225 x 50	225 x 50	225 x 50	200 x 50	240 x 45	220 x 45	190 x 45	170 x 45
1000	4800	275 x 50	250 x 50	250 x 50	225 x 50	270 x 45	240 x 45	220 x 45	220 x 45
	5400	300 x 50	275 x 50	275 x 50	250 x 50	290 x 45	270 x 45	240 x 45	220 x 45
	3000	200 x 50	175 x 50	175 x 50	150 x 50	190 x 45	170 x 45	170 x 45	140 x 45
1.1	3600	225 x 50	200 x 50	200 x 50	200 x 50	220 x 45	220 x 45	190 x 45	170x45
1500	4200	275 x 50	250 x 50	225 x 50	225 x 50	270 x 45	240 x 45	220 x 45	190 x 45
	4800	300 x 50	275 x 50	275 x 50	250 x 50	290 x 45	270 x 45	240 x 45	220 x 45
i	5400		300 x 50	300 x 50	275 x 50		290 x 45	270 x 45	240 x 45

ASPECT RATIO	ROOF PITCH
h/d	(degrees)
0.5	10
1.0	15

TABLE 10-3

RAFTERS

RAFTER	SPAN		UNSEA	SONED		SEASONED			
(mm)	(mm)	F4	F5	F7	F8	F4	F5	F7	F8
1	3000	175 x 50	150 x 50	150 x 50	150 x 50	170 x 45	170 x 45	140 x 45	120 x 45
	3600	200 x 50	175 x 50	175 x 50	175 x 50	220 x 45	170 x 45	170 x 45	140 x 45
900	4200	225 x 50	200 x 50	200 x 50	200 x 50	240 x 45	220 x 45	190 x 45	170 x 45
	4800	275 x 50	225 x 50	225 x 50	200 x 50	270 x 45	240 x 45	220 x 45	190 x 45
	5400	300 x 50	250 x 50	250 x 50	225 x 50	290 x 45	270 x 45	240 x 45	220 x 45
	3000	200 x 50	175 x 50	175 x 50	150 x 50	220 x 45	170 x 45	170 x 45	140 x 45
	3600	250 x 50	225 x 50	200 x 50	175 x 50	240 x 45	220 x 45	190 x 45	170 x 45
1200	4200	275 x 50	250 x 50	225 x 50	200 x 50	270 x 45	240 x 45	220 x 45	190 x 45
1.1.1	4800	300 x 50	275 x 50	250 x 50	225×50		270 x45	240 x 45	220 x 45
	5400	1.1	300 x 50	275 x 50	250 x 50		1000	270 x 45	240 x 45
1.000	3000	225 x 50	200 x 50	175 x 50	175 x 50	220 x 45	220 x 45	190 x 45	170 x 45
	3600	275 x 50	250 x 50	225 x 50	200 x 50	270 x 45	240 x 45	220 x 45	190 x 45
1500	4200	300 x 50	275 x 50	250 x 50	225 x 50	12.0	270 x 45	240 x 45	220 x 45
12200	4800		300 x 50	275 x 50	250 x 50			270 x 45	240 x 45
	5400			300 x 50	275 x 50		•	1.6	270 x 45

ASPECT RATIO	ROOF PITCH
h/d	(degrees)
1.0	10

TABLE 10-4

RAFTERS

RAFTE R SPACING	RAFTER SPAN		UNSEA	SONED		SEASONED			
(mm)	(mm)	F4	F5	F7	FB	F4	F5	F7	FB
	3000	200 x 50	175 x 50	150×50	150 x 50	190 x 45	170 x 45	170 x 45	140 x 45
	3600	225 x 50	200 x 50	175 x 50	175 x 50	220 x 45	190 x 45	170 x 45	170 x 45
900	4200	275 x 50	225 x 50	200 x 50	200 x 50	270 x 45	220 x 45	220 x 45	190 x 45
	4800	300 x 50	275 x 50	250 x 50	200 x 50	290 x 45	270 x 45	240 x 45	220 x 45
1	5400	1.4	300 x 50	275 x 50	225 x 50	1242	290 x 45	270 x 45	240 x 45
	3000	225 x 50	200 x 50	175 x 50	175 x 50	220 x 45	190 x 45	170 x 45	170 x 45
	3600	275 x 50	250 x 50	225 x 50	200 x 50	270 x 45	240 x 45	220 x 45	190 x 45
1200	4200	300 x 50	275 x 50	250 x 50	225 x 50		270 x 45	240 x 45	220 x 45
	4800		300 x 50	275 x 50	250 x 50			270 x 45	240 x 45
1	5400			300 x 50	275 x 50				270 x 45
	3000	250 x 50	225 x 50	200 x 50	175 x 50	270 x 45	220 x 45	220 x 45	190 x 45
1.1	3600	300 x 50	275 x 50	250 x 50	225 x 50	290 x 45	270 x 45	240 x 45	220 x 45
1500	4200		300 x 50	275 x 50	250 x 50			270 x 45	240 x 45
	4800	•		300 x 50	275 x 50		P	•	270 x 45
	5400			1	300 x 50	-		-	

PURLINS

RAFTER SPACING (mm)	PURLIN SPACING (mm)	UNSEASONED				SEASONED			
		F4	F5	F7	F8	F4	F5	F7	F8
in the second	750						45 x 70		
900	900	75 x 50		50x 75		70 x 45		1	
	1200	-					70 x 45 70 x 35		
1200	750					1.1.1.1.1.1.1.1			
	900	-	75	x50		90 x 45	70 x 45		
	1200	100 x 50		75 x 50					
1500	750				1.3.3.3				1
	900		100 x 50	S 1. S	75 x 50				10.05
	1200						90 x 45 7		70 x 45

TABLE 12

VERANDAH POSTS

POST HEIGHT (mm)	AREA OF ROOF SUPPORTED (square metres)	UNSEASONED				SEASONED			
		F4	P5	F7	F8	F4	FS	F7	F8
100.00	5	100 x 100	100 x 100	100 x 100	100 x 100	90 x 90	70 x 70	70 x 70	70 x 70
2400	10	100 x 100	100 x100	100 x 100	100 x 100	90 x 90	90 x 90	90 x 90	70 x 70
	20	•	100 x 100	100 x 100	100 x 100		90 x 90	90 x 90 90 x 90	90 x 90
	5	100 x 100	100 x 100	100 x 100	100x 100	90 x 90	70 x 70	70 x 70	70 x 70
2700	10	100 x 100	100 x 100	100 x 100	100x 100	90 x 90	90 x 90	90 x 90	90 x 90
	20	1.1.1		100 x 100	100 x100			90 x 90	90 x 90

TABLE 13

BEARERS SUPPORTING TWO STOREY LOADBEARING WALLS

BEARER	BEARER SPAN	STRESSGRADE						
(mm)	(mm)	F4	F5	F7	F8			
-	1500	200 x 75	175 x 75	150 x 75	150 x 75			
	1800	225 x 75	200x75	200 x 75	175 x 75			
	2100	275 x 75	250 x 75	225 x 75	200 x 75			
	2400	300 x 75	275 x 75	250 x 75	250 x 75			
1800	2700	- 300 x 75		275 x 75	275 x 75			
	3000			300 x 75	300 x 75			
	3300							
	3600		•		•			
	1500	225 x 75	200 x 75	175 x 75	150 x 75			
	1800	275 x 75	250 x 75	200 x 75	175 x 75			
	2100	· ·	275 x 75	250 x 75	225 x 75			
	2400	•	300 x 75	275 x 75	250 x 75			
3600	2700			300 x 75	275 x 75			
	3000			•	300 x 75			
	3300							
	3600	1000						
TABLE 14

STUDS - LOWER STOREY OF TWO STOREYS

STUD STUD SPACING HEIGHT (mm) (mm)	1	UNSEASONED				SEASONED				
	(mm)	F4	PS	F7	F8	F4	FS	F7	F8	
144	2400		100 x 40		90 x 45		90x35			
450	2400	100 x 50		100 x 40			90x45	90 :	x 35	
	2400	100 x 50	1	100 x 40		90 x 70	90 x 45	90 x 35		
600	2700	100 x 75	100 x 50	100	x 40	90	x 70	90x45	90x35	

TABLE 15

STUDS - INTERNAL WALLS - LOWER STOREY O F TWO STOREYS

	the second s		75 m	n Romm	al Flaine				
STUD STUD HEIGHT SPACING (mm) (mm)	UNSEASONED				SEASONED				
	F4	F5	F7	F8	F4	F5	F7	F8	
2400 450 600	75 x 50	75 x 40	75 x 40	75 x 40	70 x 45	70 x 35	70 x 35	70 x 35	
	1.1.4-	75 x 50	75 x 50	75 x 50		70 x 45	70 x 45	70 x 35	
2700 450 600		1000	75 x 50	75 x 50				70 x 45	
	600	1004(10)	1.1.1.1	1.14	1000	1.1		1.0.1	

100 mm Nominal Frame MAX STUD MAX. STUD UNSEASONED HEIGHT SPACING SEASONED (mm) (mm) F5 F7 F8 F4 F5 F8 F4 F7 2700 600 100 x 40 90 x 35

TABLE 16

STUDS AT SIDES OF OPENINGS -LOWER STOREY OF TWO STOREY CONSTRUCTION

STUD OPENING HEIGHT WIDTH (mm) (mm)		UNSEA	SONED		SEASONED				
(mm)	(mm)	F4	P5	F7	F8	F4	F5	F7	F8
	900	100 x 50	100 x 40	100 x 40	100 x 40	2/90 x 35	90 x 45	90 x 35	90 x 35
2400	1200	2/100 x 40	100 x 50	100 x 40	100 x 40	2/90 x 35	90 x 45	90 x 45	90 x 35
2400	2400 1500 2 1800 2	2/100 x 40	2/100 x 40	100 x 50	100 x 40	2/90 x 35	2/90 x 35	90 x 45	90 x 45
		2/100 x 40	2/100 x 40	100 x 50	100 x 40	2/90 x 35	2/90 x 35	2/90x35	90 x 45
	900	2/100 x 40	100 x 50	100 x 40	100 x 40	2/90 x 35	2/90 x 35	90 x 45	90 x 45
2700	1200	2/100 x 40	2/100 x 40	100 x 50	100 x 40	2/90 x 35	2/90 x 35	2/90 x 35	90 x 45
2100	1500	2/100 x 40	2/100 x 40	2/100 x 40	100 x 50	2/90 x 45	2/90 x 35	2/90 x 35	2/90 x 35
-	1800	2/100 x 50	2/100 x 40	2/100 x 40	100 x 50	2/90 x 45	2/90 x 45	2/90 x 35	2/90 x 35

75 mm Nominal Frame

TABLE 17

TOP PLATES - LOWER STOREY O F TWO STOREYS MAXIMUM BUILDING WIDTH: 9000 MM

			/5 m	m Nomin	ai Frame						
MAX. JOIST SPACING (mm)	MAX.STUD SPACING	UNSEASONED				SEASONED					
	(mm)	F4	F5	F7	F8	F4	F5	F7	F8		
	450				50×25						
450	600							45 x 70			
	450	75	75 x 75	50 1 75		70 x 70					
600	600		/5 X /5								

75 mm Nominal Frame

100 mm Nominal Fram	e
---------------------	---

MAX JOIST SPACING (mm)	SPACING		UNSEASONED				SEASONED				
	(mm)	F4	F5	F7	F8	F4	F5	F7	F8		
	450				1.000		1				
450	600			50v 10	m		1	16-0			
	450	75 x 100	× 100		30X 100			452.90			
600	600	1.00	-	2000			10 x 30				

TABLE 18

BOTTOM PLATES - LOWER STOREY WALLS

MAXIMUM BUILDING WIDTH: 9000 MM UPPER FLOOR JOIST SPACING: 450 MM

F4	F5	F7	F8
75)	(75	50 :	x 75 '
75 x	100	50 x	100

TABLE 19

LINTELS - LOWER STOREY OF TWO STOREYS

MAXIMUM WIDTH OF OPENING (mm)		UNSEA	SONED		SEASONED				
	F4	F5	F7	F8	F4	F5	F7	F8	
900	150 x 75	150 x 75	150 x 75	150 x 75	140 x 70	120 x 45	120 x 45	120 x 45	
1200	150 x 75	150 x 75	150 x 75	150 x 75	140 x 70	120 x 45	120 x 45	120 x 45	
1500	150 x 75	150 x 75	150 x 75	150 x 75	190 x 70	140 x 70	140 x 70	120 x 45	
1800	200 x 75	175 x 75	175 x 75	175 x 75	240 x 70	190x 70	140 x 70	140 x 70	
2100	225 x 75	200 x 75	200 x 75	200 x 75	240 x 70	190 x 70	190 x 70	190 x 70	
2400	250 x 75	225 x 75	225 x75	200 x 75	•	240 x 70	240 x 70	190 x 70	

VERANDAH BEAMS

The following sets of tables provide the sizes of timber members corresponding to the design windspeed given in clause A4. The tables are numbered 1 to 20 and each table contains the member size for the various components of a timber framed house.

FIGURE B8.3.2: VERANDAH BEAM SPACING

TABLE 20

ROOF BEAMS - NON-TRAFFICABLE ROOFS

BEAM SPAN	BEAM SPACING		UNSEA	SONED	
(mm)	(mm)	F4	F5	F7	F8
	2400	250 x 75	225 x 75	200 x 75	200 x 75
2000	3000	250 x 75	250 x 75	225 x 75	225 x 75
3000	3600	275 x 75	250 x 75	250 x 75	225 x 75
	4200	275 x 75	275 x 75	250 x 75	250 x 75
	2400	275 x 75	275 x 75	250 x 75	250 x 75
3600	3000	300x75	300 x 75	275 x 75	250 x 75
3000	3600	300 x 100	300 x 75	300 x 75	275 x 75
	4200	300 x 100	300 x 100	300 x 75	300 x 75
	2400	300 x 100	300 x 100	300 x 75	275 x 75
1000	3000	300 x 100	300 x 100	300 x 75	300 x 75
4200	3600	1. A.		300 x 100	300 x 100
	4200	-		300 x 100	300 x 100

B9 BRACING

B9.1 Scope

The following clauses give the bracing demand on walls due to wind and provide connection details for walls as well as the bracing capacity of different wall systems.

B9.2 Application

1. Determine bracing demand for the storey type and direction from Clauses B9.3.2 and B9.3.3.

2. Select bracing capacity of sub-floor bracing from Figure B9.4.2.

3. Select bracing capacity of walls from Figure B9.4.3.

The total bracing capacity MUST be greater than or equal to the bracing demand required for that particular direction.

B9.3 Bracing Demand

B9.3.1 Bracing Demand

Bracing demand is the force exerted by wind on a house in the direction under consideration. Bracing demand is based on the area of wall against which the wind blows. The applicable demand is derived in the following manner. Consider one direction at a time. Assume that wind at right angles to building length is 'direction A' and wind at right angles to building width is 'direction B'.

B9.3.2 Determination of Bracing Demand for 'Direction A'

From Table B9.3(A) determine the bracing demand for wind at right angles to building length for the storey type under consideration.

B9.3.3 Determination of Bracing Demand for 'Direction B'

From Table B9.3(B) determine the bracing demand for wind at right angles to building width for the storey type under consideration.

B9.4 Bracing Capacity

B9.4.1 General

The bracing demand derived from Clause B9.3 for each of the two directions must be resisted by bracing walls in the matching direction as shown in Figure B9.4.1. The total bracing capacity of the walls for the direction under consideration must be equal to or greater than the bracing demand for that direction.

B9.4.2 Bracing capacity of sub-floor bracing types

Bracing capacity of sub-floor bracing types is given in Figure B9.4.2.

B9.4.3 Bracing capacity of wall systems

Bracing capacities of various wall systems are given in Figure B9.4.3.

B9.5 Fixing of Bracing Walls

B9.5.1 Fixing of Top of Bracing Walls

All timber framed bracing walls must be fixed to the roof frame and/or external wall frame with connections of equal or more strength to the bracing capacity of that wall. Refer to Figure B9.5.1 for details.

B9.5.2 Fixing of Bottom of Bracing Walls

The bottom plate of all timber framed bracing walls must be fixed at their ends and intermediately at 1200 mm centres to the floor frame with an appropriate connection determined from Figure B9.5.2.

TABLE B9.3(A)

TOTAL BRACING DEMAND (KN) – WIND FORCES (TOTAL DEMAND = L X KN/M)

STOREY	WIDTH		ROOF PITC	H (degrees)	
TYPE	W (m)	s 10	15	20	25
W STOREY TYPE ingle storey (Lowset) pper storey of two Storey of highset or sub - floor ower storey of two	4	2.1	2.1	2.3	2.9
Single storey	6	2.1	2.1	2.4	3.1
(maser)	8	2.1	2.1	2.4	3.2
	10	2.1	2.1	2.4	3.4
	12	2.1	2.1	2.5	25 2.9 3.1 3.2 3.4 3.6 2.9 3.1 3.2 3.4 3.6 3.1 3.2 3.4 3.6 3.1 3.5 3.6 3.5 3.6 3.8 7.9 8.3 8.7 9.1
W STOREY TYPE Single storey (Lowset) Upper storey of two Storey Upper storey of highset or sub - floor	4	2.1	2.1	2.3	2.9
	6	2.1	2.1	2.4	3.1
	8	2.1	2.1	2.4	3.2
	10	2.1	2.1	2.4	3.4
	12	2.1	2.1	2.5	3.6
	4	2.3	2.3	2.5	3.1
Upper storey	6	2.3	2.3	2.6	3.3
highset or	8	2.3	2.3	2.6	3.5
sub -floor	10	2.3	2.3	2.6	3.6
	12	2.3	2.3	2.7	3.8
	4	6.0	6.0	6.7	7.9
of two	6	6.0	6.0	6.7	8.3
TYPE Single storey (Lowset)	8	6.0	6.0	6.8	8.7
	10	6.0	6.0	6.9	9.1
	12	6.0	6.0	6.9	9.5

TABLE B9.3(B)

STOREY	WIDTH		ROOF PITCH	(decrees)	
TYPE	W (m)	s10	15	20	25
STOREY TYPE	4	10.1	10.6	11.1	11.6
Single store	6	16.0	17.1	18.2	19.3
(Lowset)	8	22.4	24.4	26.4	28.2
· · [10	29.4	32.5	35.5	38.5
	12	36.9	NGLES TO HOUSE WIDTH ROOF PITCH (degrees) 15 20 10.6 11.1 17.1 18.2 24.4 26.4 32.5 35.5 41.4 45.8 10.6 11.1 17.1 18.2 24.4 26.4 32.5 35.5 41.4 45.8 10.6 11.1 17.1 18.2 24.4 26.4 32.5 35.5 41.4 45.8 11.6 12.1 18.7 19.9 26.7 28.8 35.5 38.8 45.2 49.9 29.4 30.3 246.5 48.6 65.1 69.0 85.4 91.4 107.2 115.9	50.0	
STOREY TYPE Single storey (Lowset) Upper storey of two Storey Upper storey of highset or sub - floor Lower storey of two storey	4	10.1	10.6	11.1	11.6
	6	16.0	17.1	18.2	19.3
	8	22.4	24.4	26.4	28.2
	10	29.4	32.5	35.5	38.5
	12	36.9	41.4	45.8	50.0
	4	11.0	11.6	12.1	12.6
Upper storey	6	17.5	18.7	19.9	21.0
highsetor	8	24.5	26.7	28.8	30.8
sub - floor	10	32.1	35.5	38.8	42.0
STOREY TYPE Single storey (Lowset) Upper storey of two Storey Upper storey of highset or sub - floor	12	40.3	45.2	49.9	54.6
	4	28.4	29.4	30.3	31.3
of two	6	44.2	46.5	48.6	50.7
STOREY TYPE Single storey (Lowset) Upper storey of two Storey Upper storey of highset or sub - floor	8	61.1	65.1	69.0	72.8
	10	79.1	85.4	91.4	97.3
	12	98.2	107.2	115.9	124.4

TOTAL BRACING DEMAND (KN) - WIND FORCES

NOTES:

- i. Internal bracing must be evenly distributed.
- **ii.** Bracing walls must be provided in both directions.

FIGURE B9.4.1(A): LOCATION OF BRACING WALL

IGURE B9.5.1			Desig	n Stre	Strength (kN)			
FIXING OF BRACING WALLS TO ROOF		U	nseaso timbe	ned r		Seaso timbe	ned er	
FRAME, OR TO EXTERNAL WALL FRAME		J2	J3	J4	JD2	JD3	JD4	
Rafters or Trusses parallel to Bracing Wall								
I) F8-100 x 40 nogging on flat 4/75 x 3.15 ¢ nails Pracing wall Bracing wall	nails d	1.8	1.3	0.94	23	1.8	13	
Framing anchors F8 - 100 x 40 nogging (one bolt) F8 - 125 x 40 nogging (two bolts) 6/3.15 ¢ nails each	Bolt Size							
1 or 2 bolts as	M10	3.9	2.5	1.6	4.6	3.5	2.6	
por laure	M12	4.6	3.0	1.9	5.6	4.2	3.1	
	M16	6.2	4.0	2.5	7.6	5.6	4.2	
	2/M10	7.8	5.0	3.2	8.0	7.0	5.2	
	2/M12	8.0	6.0	3.8	8.0	8.0	6.2	
Bracing wäll								
III) Bracing wall Framing anchor (legs not bent) 6/3.15 \u03c6 nails to each face		4.9	3.5	25	6.6	5.2	3.7	

FIGURE B9.5.1 Continued		123	De	sign S	treng	th (kN	1)
FIXING OF BRACING WALLS TO ROOF		U	timbe	med r		Seaso	oned er
FRAME, OR TO EXTERNAL WALL FRAME		J2	J3	J4	JD2	JD3	JD4
VII) 2 skew nails per crossing, size as per table	Nails						
	2/3.15	1.5	1.1	0.8	1.1	0.9	0.7
Batter	2/3.75	2.1	1.5	1.1	2.7	2.1	1.5
Bracing wall							
VIII) Bolts or nails as per table blocks to be both sides of	Nails						
rafter or bottom chord	4/3.15	3.1	2.2	1.6	3.9	3.1	2.2
Blocking pieces large enough to avoid splitting	4/3.75	4.2	3.0	2.1	5.3	4.2	3.0
	6/3.15	4.1	2.9	2.1	5.4	4.3	3.1
	Bolt Size						
	M10	4.6	4.0	3.2	5.4	4.6	3.7
Bracing walls	M12	6.6	5.0	4.0	7.0	5.4	4.4
44JJ	M16	8.4	6.7	5.3	9.3	7.3	5.9
X) 2/30 x 0.8 gaiv straps with	Nails						
strap as per table	4/3.15	7.4	5.3	3.7	9.4	5.3	44
	6/3.15	9.7	7.0	4.9	13	10.3	7.4
Note: Where one strap is used, loads may be half of those tabled.							

B10 TIE-DOWN

B10.1 Scope

The following clauses give the bracing demand on walls due to wind and provide connection details for walls as well as the bracing capacity of different wall systems.

This clause provides for structural connections to resist uplift and shear forces on floor, wall and roof framings. These details are in addition to nominal fixing.

Continuity of tie-down must be provided from the roof sheeting to the foundations.

B10.2 Application

To determine an appropriate structural tie-down detail, the following general steps are to be followed:

(a) From Fig. B10.3(A) determine the appropriate dimension 'A' for the member or joint considered.

(b) From Tables B10.5.1 to B10.11.4 determine the uplift forces to be resisted by each joint considered.

(c) Determine the appropriate joint group for the joint under consideration.

(d) Enter the appropriate design strength figure and establish a suitable tie-down detail.

B10.3 Dimension 'A'

Dimension 'A' must be used to determine the tie-down requirements for each structural joint in floor framing, wall framing and roof framing excluding purlins.

NOTES:

- **i.** Dimension 'A' is NOT to be used for determination.
- **ii.** Dimension 'S' is at right angles to dimension 'A' and the method of measurement is shown in Figure B10.9(A).

NOTES: To determine dimension 'A' for floor joists and bearers, consideration should be given to the sharing of uplift load through internal partitions. The dimensions 'A' illustrated above for bearers and floor joists take this into account.

FIGURE B10.3(A): DIMENSION 'A' - RAFTERED ROOF

B10.4 General Connection Requirements

B10.4.1 Steel Washers

Bolt ¢	Washer Size	(mm)
(mm)	Square	Round
M10 bolt	40 x 40 x 2.5 mm	45 mm dia. x 2.5 mm
M 12 bolt	50 x 50 x 3 mm	55 mm dia.x 3 mm
M 16 bolt	57 x 57 x 4 mm	65 mm dia. x 4 mm
M20 bolt	65 x 65 x 5 mm	75 mm dia.x 5 mm

B10.4.2 Drilling for Bolts

(a) Bolt holes in timber must be 1-2 mm greater in diameter than the bolt diameter.

(b) Bolt holes in steel must provide a snug fit, i.e. not greater than 0.5 mm larger than bolt diameter.

B10.4.3 Drilling for Coach Screws

- (a) Hole for Shank = Shank Diameter + 1 mm.
- (c) Hole for Thread = Root Diameter.

B10.5 Uplift Forces on Bearers

The uplift forces on bearers must be determined from Tables B10.5.1 to B10.5.4. For typical details and design strengths refer to Figure B10.5.

B10.6 Uplift Forces on Floor Joists

The uplift forces on floor joists are determined from Tables B10.6.1 to B10.6.4. For typical details and design strengths, refer to Figure B10.6.

B10.7 Bracing Demand on Walls

The bottom plate of all walls must be fixed to the floor frame or concrete slab in a manner sufficient to resist the bracing demand on the walls. Refer to Figure B9.5.2 for details.

B10.8 Uplift Forces on Rafters

The uplift forces on rafters are determined from Tables B10.8.1 to B10.8.4 and tie-down details to resist the uplift from Figures B10.8(A), B10.8(B), or B10.8(C) as appropriate.

B10.9 Uplift Forces on Roof Beams, Lintels, Verandah Beams and Verandah Posts

The uplift forces on roof beams, lintels, verandah beams and verandah posts are determined from Tables B10.9.1 to B10.9.4. The dimensions 'A' and 'S' required for using the tables are shown in Figures B10.3(A) and B10.9(A).

For typical tie-down details and design strengths refer Figure B10.9(B) to B 10.9(D).

B10.10 Uplift Forces on Purlins

The uplift forces on purlins are determined from Tables B10.10.1 to B10.10.4. For typical purlin to rafter tie-down details and design strengths refer to Figure B10.10.

210.11 Uplift Forces on Cladding fasteners

The uplift forces on cladding fasteners are determined from Tables B10.11.1 to B10.11.4 and the tiedown details to resist the uplift, from Figure B10.11.

UPLIFT FORCES ON BEARERS (KN)

Table	B10.5.1	1	
THIS TAB	LE VALID FO	OR	
Aspect Ratio (height/d)	0.25	0.5	1.0
Roof Pitch (Degrees)	15, 20, 25	20, 25	25

Dimension "A" (mm)	Bearer Span (mm)	LOWSET	HIGHSET
	1800		3.63
3000	2400		4.84
	3000		6.06
	3600		7.27
	1800	NO	4.36
3600	2400	UPLIFT	5.81
	3000		7.27
	3600		8.72
	1800	1	5.09
4200	2400	1	6.78
	3000	1	8.48
	3600		10.17
1.1	1800		5.81
4800	2400	1	7.75
	3000	1	9.69

Table B10.5.3

11.63

THIS TABLE VALID FOR					
Aspect Ratio (height/d)	0.5	1.0			
Roof Pitch (Degrees)	10	15			

3600

Dimension *A* (mm)	Bearer Span (mm)	LOWSET	HIGHSET HOUSES
	1800	1.30	7.52
3000	2400	1.73	10.03
	3000	2.17	12.54
	3600	2.60	15.05
	1800	1.56	9.03
3600	2400	2.08	12.04
	3000	2.60	15.05
in the second	3600	3.12	18.05
	1800	1.82	10.53
4200	2400	243	14.04
	3000	3.03	17.55
	3600	3.64	21.06
	1800	2.08	12.04
4800	2400	2.77	16.05
	3000	3.46	20.06
	3600	4.16	24.07

Table B	10.5.2	-	
THIS TABLE V	ALID	FOR	
Aspect Ratio (height/d)	0.25	0.5	1.
Roof Pitch (Degrees)	10	15	20

Dimension	Bearer	13.02	1.575.5
-A-	Span	LOWSET	HIGHSET
(mm)	(mm)	HOUSES	HOUSES
	1800	1	5.19
3000	2400	1	6.92
	3000		8.65
	3600	1	10.38
1.1.1.1	1800	line.	6.23
3600	2400	NO	8.30
1.1	3000	UPLIFT	10.38
	3600		12.45
1.00	1800		7.26
4200	2400		9,69
	3000		12.11
	3600		14.53
10.000	1800		8.30
4800	2400		11.07
	3000		13.84
	3600		16.60

Table B10.5.4

THIS TABLE VALID FOR					
Aspect Ratio (height/d)	1.0				
Roof Pitch (Degrees)	10				

Dimension	nsion Bearer		
-A-	Span	LOWSET	HIGHSET
(mm)	(mm)	HOUSES	HOUSES
	1800	3.63	9.86
3000	2400	4.84	13.14
	3000	6.06	16.43
	3600	7.27	19.71
1.1.2.2.1	1800	4.36	11.83
3600	2400	5.81	15.77
	3000	7.27	19.71
	3600	8.72	23.66
	1800	5.09	13.80
4200	2400	6.78	18.40
	3000	8.48	23.00
	3600	10.17	27.60
	1800	5.81	15.77
4800	2400	7.75	21.03
	3000	9.69	26.28
	3600	11.63	31.54

FIGURE B10.5		Design Strength (kN)						
	Bolts	Un	season Timber	ed	Sea T	asoned imber		
BEARERS TO STUMPS/PIERS/POSTS		J2	J3	J 4	JD2	JD3	JD4	
i) Bott as per	M10	4.7	3.8	2.7	6.0	5.8	4.8	
	M12	6.2	5.0	3.6	7.9	7.4	6.2	
75 x 8 MS 500 mm M.S. Column	M16	8.0	6.4	4.6	10.3	9.6	8.0	
	M20	11	9.0	6.4	14.4	13.4	10.4	
II) Bolt as	M10	7.8	5.0	3.2	9.2	7.0	5.2	
per table	M12	9.2	6.0	3.8	11.2	8.4	6.2	
50 x 6 MS 300 mm	M16	12.4	8.0	5.0	15	11	8.4	
	M20	15.6	10	6.3	19	14	10.4	
III) Bot as 4 bolt o	2/M10	9.4	7.6	5.4	12	11.6	9.6	
75 × 8 MS	2/M12	12.4	10	7.2	16	15	12.4	
fishtal plate 600 mm for M16 M.S. Column	2/M16	16	12.8	9.2	20.6	19	16	
┼ <u>╴</u> ╤╌╟╴ ╵┝┿┤	2/M20	22	17.6	12.8	29	27	14.4	
IV) Bolt as per table	M10	11.5	10.6	6.7	11.5	11.5	11.5	
	M12	17	16.5	10.5	17	17	17	
Note: M12 botts must no 500 for M12 600 for M16 750 for M20	M16	32	21.5	14	32	24	17	
exceeds 1800 mm	M20	22	17.6	13	29	27	21	
V) Bolt	M10	11.5	10.6	6.7	11.5	11.5	11.5	
	2/M10	23	21	13.4	23	23	23	
Bolt as	M12	17	16.5	10.5	17	17	17	
	2/M12	34	33	21	34	34	34	
	M 16	32	21.5	14	72	32	24	
RHS Min 76 x 76 x 0.4	2/M16	64	45	27.4	64	64	48	
	M20	44	28	18	50	42	31	
	2.M20	88	56	36	100	85	63	

FIGURE B10.5 continued		3.1	Desi	gn Str	ength	(kN)	
TIE-DOWN:	Bolts	Uns 1	eason imber	əd	Se	easone Timber	d
BEARERS TO STUMPS / PIERS / POSTS		J2	J3	J4	JD2	JD3	JD4
VI) Bolts as	2/M12	18.4	12	7.6	22.4	17	12.4
per table	2/M16	25	16	10	30.4	224	17
SURE B10.5 continued S-DOWN: ARERS TO STUMPS / PIERS / POSTS Boits as per table 75 x 8 MS stirrup 75 x 16 MS pate Boits as per table 75 x 16 MS pate To m Min ts as table 75 mm Min ts as table 5 Boit of 5 Boit of	2/M20	31	20	12.6	37.6	28	21
VII) 75 x 16 MS plate	2/M10	23	23	23	23	23	23
X	2M12	34	34	24	34	34	34
M12 - 450	2/M16	59	37	24	64	53	39
Bolts as per table L = M16 = 600 M20 = 750	2/M20	59	37	24	70	53	39
VIII)	M10	4.7	3.8	27	6.0	5.8	4.8
	M12	6.2	5.0	3.6	7.9	7.4	6.2
Bolts as per table 5 Bolt ¢	M16	8.0	6.4	4.6	10.3	9.6	8.0
4 Bolt ¢	M20	11	8.8	6.4	14.4	13.4	10.4
	2/M10	9.4	7.6	5.4	12	11.6	9.6
Timber post	2/M12	12.4	10	7.2	16	15	12.4
	2/M16	16	13	9.2	21	19.2	16
	2/M20	22	17.6	13	29	27	21
IX) 50 x 6 Plate	2/M10	15.6	10	6.4	18.4	14	10.4
\triangleleft	2/M12	18.4	12	7.6	22.4	17	12.4
5 Bolt o	2/M16	25	16	10	30.4	22.4	17
Bolts as per table	2/M20	31	20	12.6	38	28	21

UPLIFT FORCES ON JOISTS (KN)

TH	Table B10.6. IS TABLE VALID	1 FOR	_
Aspect Ratio (h/d)	0.25	0.5	1
Roof Pitch (Degrees)	15, 20, 25	20, 25	25

DIMENSION "A" (mm)	JOIST SPACING (mm)	LOWSETHOUSES	HIGHSET HOUSES
3000		12.00	0.91
3600	450	NO UPLIFT	1.09
4200			1.27
4800		-	1.45

Table B10.6.2

THI	S TABLE VALID	FOR	
Aspect Ratio (h/d)	0.25	0.5	1
Roof Pitch (Degrees)	10	15	20

DIMENSION "A" (mm)	JOIST SPACING (mm)	LOWSET HOUSES	HIGHSET HOUSES
3000		hards to far 13	1.30
3600	450	NO UPLIFT	1.56
4200			1.82
4800			2.08

Table B10.6.3

10-5-50	THE	TABLE VALID FOR	
Aspect Ratio	(h/d)	0.5	1
Roof Pitch (I	Degrees)	10	15
DIMENSION "A" (mm)	JOIST SPACING (mm)	LOWSETHOUSES	HIGHSET HOUSES
3000	1.5.5	0.32	1.88
3600	450	0.39	2.26
4200		0.45	2.63
4800		0.52	3.01

Table B10.6.4

	THE	S TABLE VALID FOR		
Aspect Ratio (h/d) Roof Pitch (Degrees)			1 10	
3000	1000	0.91	2.46	
3600	450	1.09	2.96	
4200		1.27	3.45	
4800		1.45	3.94	

UPLIFT FORCES ON RAFTERS (KN)

TABLE B10.8.1

THIS TABLE	VALID FOR
Aspect Ratio (h/d) Roof Pitch (deg.	
0.25	. 15, 20, 25
0.5	20, 25
1	25

TABLE B10.8.2

THIS TABLE	VALID FOR
Aspect Ratio (h/d) Roof Pitch (deg.)	
0.25	10
0.5	15
1	20

Dimension "A" (mm)	Rafter Spacing (mm)	UPLIFT FORCE (kN)
	900	1.38
1800	1200	1.84
	1500	2.30
	900	1.84
2400	1200	2.46
	1500	3.07
	900	2.30
3000	1200	3.07
	1500	3.84
	900	2.76
3600	1200	3.68
	1500	4.60
	900	3.22
4200	1200	4.30
	1500	5.37
	900	3.68
4800	1200	4.91
	1500	6.14

Dimension "A" (mm)	Rafter Spacing (mm)	UPLIFT FORCE (kN)
1000	900	1.85
1800	1200	2.46
	1500	3.08
	900	2.46
2400	1200	3.28
_	1500	4.11
	900	3.08
3000	1200	4.11
	1500	5.13
	900	3.70
3600	1200	4.93
	1500	6.16
in .	900	4.31
4200	1200	5.75
1000	1500	7.19
	900	4.93
4800	1200	6.57
	1500	8.21

NOTES: Tie-down over internal walls must be taken directly to floor frame or concrete slab.

UPLIFT FORCES ON RAFTERS (KN)

TABLE B10.8.3

TABLE B10.8.4

THIS TABLE	VALID FOR
Aspect Ratio (h/d)	Roof Pitch (deg.)
0.5	10
1	15

THIS TABLE	VALIDFOR
Aspect Ratio (h/d)	Roof Pitch (deg.)
1	10

Dimension "A" (mm)	Rafter Spacing (mm)	UPLIFT FORCE (kN)
	900	2.55
1800	1200	3.40
	1500	4.25
	900	3.40
2400	1200	4.53
1. No. 1. No.	1500	5.66
	900	4.25
3000	1200	5.66
	1500	7.08
	900	5.10
3600	1200	6.79
1	1500 ·	8.49
	900	5.95
4200	1200	7.93
	1500	9.91
	900	6.79
4800	1200	9.06
	1500	11.32

Dimension "A" (mm)	Rafter Spacing (mm)	UPLIFT FORCE (kN)
	900	3.25
1800	1200	4.33
	1500	5.41
	900	4.33
2400	1200	5.77
2.2	1500	7.22
	900	5.41
3000	1200	7.22
	1500	9.02
	900	6.50
3600	1200	8.66
	1500	10.83
	900	7.58
4200	1200	10.10
	1500	12.63
	900	8.66
4800	1200	11.55
	1500	14.44

NOTES: Tie-down over internal walls must be taken directly to floor frame or concrete slab.

UPLIFT FORCES ON ROOF BEAMS, LINTELS, AND VERANDAH PLATES

TABLE B10.9.1

THIS TABLE VALID FOR		
Aspect Ratio (h/d)	Roof Pitch (Deg.)	
0.25	15, 20, 25	
0.5	20, 25	
1	25	

AREA OF ROOF TO BE TIED DOWN DIMENSION "A" x DIMENSION "S"	UPLIFT FORCE (KN)		
1	0.85		
2	1.70		
3	2.56		
4	3.41 4.26		
5			
6	5.11		
7	5.97		
8	6.82		
9	7.67		
10	8.52		
11	9.38		
12	10.23		

TABLE B10.9.1

THIS TABLE	IS VALID FOR
Aspect Ratio (h/d)	Roof Pitch (Deg.)
0.5	10
1	15

AREA OF ROOF TO BE TIED DOWN DIMENSION "A" x DIMENSION "S"	UPLIFT FORC		
1	1.57		
2	3.15		
3	4.72		
4	6.29		
5	7.86		
6	9.44		
7	11.01		
8	12.58		
9	14.16		
10	15.73		
11	17.30		
12	18.87		

TABLE B10.9.2

THIS TABL	E VALID FOR
Aspect Ratio (h/d)	Roof Pitch (Deg.)
0.25	10
0.5	15
1	20

AREA OF ROOF TO BE TIED DOWN DIMENSION * A * x DIMENSION * S *	UPLIFT FORCE (KN)		
1	1.14		
2	2.28		
3	3.42		
4	4.56 5.70		
5			
6	6.84		
7	7.98		
8	9.12		
9	10.27		
10	11.41		
11	12.55		
12	13.69		

TABLE B10.9.2

THIS TABL	E VALID FOR
Aspect Ratio (h/d)	Roof Pitch (Deg.)
1	10

AREA OF ROOF TO BE TIED DOWN DIMENSION * A * x DIMENSION * S *	UPLIFT FORCE (kN)		
1	2.00		
2	4.01		
3	6.01		
4	8.02		
5	10.02		
6	12.03		
7	14.03		
8	16.04		
9	18.04		
10	20.05		
11	22.05		
12	24.06		

		1.000	De	sign Si	trength	(KN)	_
TIE-DOWN: LINTELS		Unseasoned Timber		Seasoned Timber			
		J2	J3	J4	JD2	JD3	JD4
I) Solid rogging Bolt or strap	4 nails each end of strap	6.2	4.4	3.1	8.6	6.8	4.8
250 mm 30 x 0.8 G.I. strap 4 x 3.15 ¢ nails each end (same to bottom plate/floor frame)	6 nails each end of strap	8.8	6.3	4.4	12.6	10	7.0
250 mm M10 bot or G.L strap to floor fram	e or slab 4 nails each	11.4		5.9	164	12	
Bon or strap	end of strap	11.4	0.1	5.0	10.4	13	9.4
250 mm	(M10 Bolt)	11.5	10.6	6.7	11.5	11.5	11.
250 mm	6 nails each end of strap	16.6	12	8.4	24	19	13.5
250 mm Boit to slab or floor frame	(M12 Bolt)	17	16.5	10.5	17	17	17
") Let	Bolt Size						-
					_	Sector 11	
	M10	11.5	10.6	6.7	11.5	11.5	11
Bolt and washer to floor	M10 M12	11.5 17	10.6 16.5	6.7 10.5	11.5 17	11.5 17	11
Bolt and washer to floor frame or stab. Refer to table	M10 M12 M16	11.5 17 32	10.6 16.5 21.5	6.7 10.5 14	11.5 17 32	11.5 17 32	11. 17 24
Bolt and washer to floor frame or stab. Refer to table Spacer nailed to studs 38 mm max.	M10 M12 M16 M20	11.5 17 32 44	10.6 16.5 21.5 28	6.7 10.5 14 18	11.5 17 32 50	11.5 17 32 42	11: 17 24 31
Bolt and washer to floor frame or slab. Refer to table Spacer nailed to studs 38 mm max.	M10 M12 M16 M20	11.5 17 32 44	10.6 16.5 21.5 28	6.7 10.5 14 18	11.5 17 32 50	11.5 17 32 42	111: 17 24 31
Bolt and washer to floor frame or slab. Refer to table Spacer nailed to studs 38 mm max. Alternative detail	M10 M12 M16 M20	11.5 17 32 44	10.6 16.5 21.5 28	6.7 10.5 14 18	11.5 17 32 50	11.5 17 32 42	111 17 24 31
Bolt and washer to floor frame or slab. Refer to table Spacer nailed to studs 38 mm max. Atternative detail	M10 M12 M16 M20	11.5 17 32 44	10.6 16.5 21.5 28	6.7 10.5 14 18	11.5 17 32 50	11.5 17 32 42	11. 17 24 31
Bolt and washer to floor frame or stab. Refer to table Spacer nailed to studs 38 mm max. Alternative detail	M10 M12 M16 M20	11.5 17 32 44	10.6 16.5 21.5 28	6.7 10.5 14 18	11.5 17 32 50	11.5 17 32 42	111: 17 24 31
Bolt and washer to floor frame or stab. Refer to table Spacer nailed to studs 38 mm max. Alternative detail	M10 M12 M16 M20	11.5 17 32 44	10.6 16.5 21.5 28	6.7 10.5 14 18	11.5 17 32 50	11.5 17 32 42	111 17 24 31
FIGURE B10.9 (C)		Des	lgn Sta	rength	(kN)		
--	------	--------	---------	--------	-------------	------	
TE-DOWN - BOOF BEAMS	Unse	asoned	Timber	Sea	sonedTimber		
HE-DOWN. HOOF BEAMS	J2	J3	J4	JD2	JD3	JD4	
1) 7 x 3.15¢ nails each side 30 x 0.8 GL strars	11.4	8.0	5.8	16.4	13	92	
M10 bolt to floor frame or slab 100 mm max.	15.6	10	6.4	18.4	14	10.4	
Bots as 2/M12	18.4	12	7.6	22	17	12.4	
T5 Bok ¢ 46 Bolto 2 46 Bolto 2 47 Bolto							
M10	11.5	10.6	6.7	11.5	11.5	11.5	
Bolt with wather at M12	17	16.5	10.5	17	17	17	
PLAN per Table B10.4.1 Continue for M16	32	21.5	14	32	32	24	
full height required M20	44	28	18	50	42	31	
Bolt taken to underside of floor joists, bearer or concrete slab							

FIGURE B10.9 (C) continued			Des	ign Str	ength (kN)		
TIE-DOWN: ROOF BEAMS		Unseasoned Timber			Seasoned Timber			
TIE-DOWN: HOOF BEAMS	·		J2	J3	J4	JD2	JD3	JD4
™)		2M10	23	21	13	23	23	23
- 11	12	2/M12	34	33	21	34	34	34
MS plate - 75 x 12 mm for M10 and M12 75 x 25 mm for M16	Continue for	2M16	59	37	24	64	53	39
2 bolts with plate as partable	required	2/M20	59	37	24	70	53	39
V) Non compressible packing to be installed just prior to internal lining being fixed 76 x 76 x 4.0 FHS 0r 102 x 102 x 4.0 FHS 102 x 102 x 4.0 FHS 102 x 102 x 4.0 FHS	Over hang if required		79	50	32	92	68	51

		Design Strength (kN)						
FIGURE B10.9 (D)	Bolts	Unseasoned Timber		limber	Seasoned Tin		mber	
TIE-DOWN: VERANDAH BEAMS	1	J2	J3	J4	JD2	JD3	JD4	
Plate D	M10	4.7	3.8	2.7	6.0	5.8	4.8	
6 bolt & Bolts as 5 bolt & Bolts as 4 bolt & Pertable	M12	6.2	5.0	3.6	7.9	7.4	6.2	
T	M 16	8.0	6.4	4.6	10	9.6	8.0	
	2/M10	9.4	7.6	5.4	12	11.6	9.6	
TH	2/M12	13	10	7.2	15.8	14.8	12.4	
Bolts as 4 bolte per table 5 bolte	2/M16	16	13	9.2	20.6	19	16	
m) A	M10	7.8	5.0	3.2	9.2	7.0	5.:	
50 x 6 MS	M12	9.2	6.0	4.0	11.2	8.4	6.2	
Plate Bolts as	M16	12.4	8.0	5.0	15	11	8.	
Column	2/M10	15.6	10	6.4	18.4	14	10.	
50 x 6 MS	2/M12	18.4	12	7.6	22.4	17	12.4	
Plate Boits as per table	2/M16	25	15	10	30.4	22.4	17	
50 x 8 MS stirrup Column								
Bolts as specified MS post support 150 min.		R	EFERTO	D MANU ECIFICA	FACTUR	ERS		

FIGURE B10.9 (D) contin	ued			De	esign S	Strengt	h (kN)	
			Unse	asoned	Timber	Sec	asoned T	imber
TIE-DOWN: VER	ANDAH BEAMS		J2	J3	J4	JD2	JD3	JD4
V) M1	2 bolts	2/M12	26.4	24	19	33.6	30	24
+ +	-	2/M16	46.4	43	21	34	34	34
Boits as per table	152 x 89 x 10 angles							
v)	Boit as per table	2/M10	23	23	13.4	23	23	23
+ T		2/M12	34	33	21	34	34	34
		2/M16	64	43	28	64	64	48
	90 x 12 x 150 flat bar, 6 C.F.W. 76 x 76 x 4.0 R.H.S.	2/M20	88	56	36	100	85	63
Note: The sameor an equired at the bottom of the p	ivalent detail is xost	M10	9.0	8.4	6.6	11.6	10.4	8.4
Г	Mi2belt	2/M10	18	17	13	23	21	17
T		M12	13	12	9.6	17	15	12
	5 x bolt ¢	2/M12	26.4	24	19	33.6	29.6	24
1	$\langle \rangle$	M16	23	21.6	17	29.6	27	21.6
lote: The same or an	1 or 2 bolts	2/M16	46.4	37	24	59	53	39
equivalent detail is	+→↓→ as per table	M20	36.4	33.6	24	46.4	41.6	33.
of the post				-				-

UPLIFT FORCES ON PURLINS (KN)

TABLE B10.10.1

THIS TABLE VALID FOR			
Aspect Ratio (h/d)	Roof Pitch (Degrees)		
0.25	15, 20, 25		
0.50	20, 25		
1.00	25		

		UPLIFT R	ORCE (KN)
RAFTER SPACING (mm)	PURLIN SPACING (mm)	General Area of Roof	Local Presssure Region *
	750	0.68	1.16
900	900	0.81	1.40
	1200	1.08	1.86
	750	0.90	1.55
1200	900	1.08	1.86
12521	1200	1.44	2.48
	750	1.13	1.94
1500	900	1.35	2.33
	1200	1.80	3.10

TABLE B10.10.2

THIS TABLE VALID FOR				
Aspect Ratio (h/d)	Roof Pitch (Degrees)			
0.25	10			
0.50	15			
1.00	20			

		UPLIFT FO	ORCE (KN)
RAFTER SPACING (mm)	PURLIN SPACING (mm)	General Area of Roof	Local Presssure Region *
	750	0.87	1.55
900	900	1.05	1.86
	1200	1.39	2.48
1	750	1.16	2.07
1200	900	1.39	2.48
	1200	1.86	3.31
	750	1.45	2.59
1500	900	1.74	3.10
	1200	2.32	4.14

TABLE B10.10.3

THIS TABLE VALID FOR				
Aspect Ratio (h/d) Roof Pitch (Degree				
0.50	10			
1.00	15			

		UPLIFTF	ORCE (KN)
RAFTER SPACING (mm)	PURLIN SPACING (mm)	General Area of Roof	Local Presssure Region *
	750	1.16	2.14
900	900	1.40	2.56
	1200	1.86	3.42
	750	1.55	2.85
1200	900	1.86	3.42
	1200	2.48	4.56
1.1.1	750	1.94	3.56
1500	900	2.33	4.27
	1200	3.10	5.69

TABLE B10.10.4

THIS TABLE VALID FOR				
Aspect Ratio (h/d)	Roof Pitch (Degrees)			
1	10			

		UPLIFTFO	ORCE (KN)
RAFTER SPACING (mm)	PURLIN SPACING (mm)	General Area of Roof	Local Presssure Region *
11-11	750	1.45	2.72
900	900	1.75	3.26
1.1.1	1200	2.33	4.35
	750	1.94	3.62
1200	900	2.33	4.35
	1200	3.10	5.80
	750	2.42	4.53
1500	900	2.91	5.44
	1200	3.88	7.25

NOTES:

i. It has been assumed that all glazed openings are protected by means of shutters such as shown in Section G.

ii. * Local Pressure Region is that area of the roof that is subject to higher wind uplift forces than the general roof area. Local Pressure region is within 900 mm of the edges of the roof and within 900 mm of either side of the ridge of the roof. Local Pressure is not applicable to the ridge of roofs with a pitch of less than 10 degrees.

FIGURE B10.10			Des	gn Str	ength	(kN)	
		Uns	easone	d Timbe	Sea	soned "	Timber
		J2	J3	J4	JD2	JD3	JD4
i) 75 x 50 purlin 1/100 x 3.75 \u03c6 nail (50 mm penetration int receiving member)	10	0.65	0.55	0.50	0.85	0.55	0.37
li) 75 x 50 purlin 1/90 mm No. 14 Type 17 so (40 mm penetration into receiving member)	36 W	2.8	2.0	1.6	35	2.5	2.0
III) No. of Fra Anchors	uming 1 2	3.7 6.2	2.6	1.9	4.7	3.7 6.8	2.6 4.0
l framing anchor with 4 / 3.15 ¢ nails each leg	4	11.4	8.1	5.8	16.4	13	9.2
N) No. of nails e end of strap 30 x 0.8 G.I. strap with 3.15 ¢ nails each end of strap	ach 3 4	4.9	3.5	25	6.6 8.6	5.2 6.8	3.7 4.8

FIGURE B10.10		Design Strength (kN)						
		Uns	easoned	d Timbe	Sea	soned 1	Timber	
FIAING OF FOREIN TO HAFTER		J2	J3	J4	JD2	JD3	JD4	
i) 75 x 50 purlin 1/100 x 3.75 \u03c6 nail (50 mm penetration int receiving member)	10	0.65	0.55	0.50	0.85	0.55	0.37	
II) 75 x 50 purlin 1/90 mm No. 14 Type 17 so (40 mm penetration into receiving member)	30 W	2.8	2.0	1.6	3.5	2.5	2.0	
III) No. of Fra Anchors	uming 1	3.7	2.6	1.9	4.7	3.7	2.6	
	2	6.2	4.4	3.1	8.6	6.8	4.0	
I framing anchor with 4 / 3.15 ¢ nails each leg	4	11.4	8.1	5.8	16.4	13	9.2	
IV) No. of nails e end of strap	each 3	4.9	3.5	25	6.6	5.2	3.7	
30 x 0.8 G.I. strap with 3.15 ¢ nails each end of strap	4	6.2	4.4	3.1	8.6	6.8	4.8	

FIGURE B10.10 continued		Des	ign St	Design Strength (kN)						
	Unsea	isoned T	imber	Seas	T beno	imber				
	J2	J3	J4	JD2	JD3	JD4				
V) 30 x 0.8 G.L looped strap with 3.15 \$\phi\$ nails each end of strap 3 nails each end for J2 timber 4 nails each end for J3 & JD4 timber 5 nails each end for J4, JD5 & JD6 timber	72	72	72	7.2	7.2	7.2				
VI) 75 x 50 purlin 19 mm lining 30 x 1.8 G.I. strap 1/75 mm No. 14 Type 17 screw at each end	7.0	5.0	3.6	8.5	6.1	5.0				
VII)										
place by U nails No. of kops	2.6	2.6	2.6 5.2	2.6 5.2	2.6 5.2	2.6 52				

20

UPLIFT FORCES PER CLADDING FASTENER (KN)

TABLE B10.11.1

THISTABL	E VALID FOR
Aspect Ratio (h/d)	Roof Pitch (Degrees)
0.25	15, 20, 25
0.5	20, 25
1	25

THIS TABL	EVALID FOR
pect Ratio (h/d)	Roof Pitch (Degrees)
0.25	10
0.5	15

1

TABLE B10.11.2

	UPLIFTFO		RCE (KN)
SPACING S (mm)	FASTENER SPACING (mm)	General Area of Roof	Local Pressure Region *
	76	0.07	0.11
750	190	0.16	0.27
	203	0.18	0.29
	76	0.08	0.13
900	190	0.20	0,32
	203	0.21	0.34
	76	0.11	0.17
1200	190	0.26	0.43
	203	0.28	046

alan brunes		UPLIFT FORCE (KN)				
SPACING (mm) (mm)	General Area of Roof	Local Pressure Region *				
	76	0.08	0.14			
750	190	0.21	0.35			
200	203	0.22	0.37			
	76	0.10	0.17			
900	190	0.25	0.42			
1000	203	0.26	0.45			
	76	0.13	0.22			
1200	190	0.33	0.56			
	203	0.35	0.60			

TABLE B10.11.3

THIS TABL	E VALID FOR
Aspect Ratio (h/d)	Roof Pitch (Degrees)
0.5	10
1	15

	10.00	UPLIFT FORCE (
PURLIN SPACING (mm)	FASTENER SPACING (mm)	General Area of Roof	Local Pressure Region *
_	76	0.11	0.19
750	190	0.27	0.47
	203	þ.29	0.50
	76	0.13	0.23
900	190	0.32	0.57
1993	203	0.34	0.61
1200	76	0.17	0.30
	190	0.43	0.76
	203	0.46	0.81

TABLE B10.11.4

THIS TABLE VAL	DFOR
Aspect Ratio (h/d)	1
Roof Pitch (Degrees)	10

	and and a straight	UPLIFT FOR	RCE (KN)
PURLIN SPACING (mm)	FASTENER SPACING (mm)	General Area of Roof	Local Pressure Region *
	76	0.13	0.24
750	190	0.33	0.60
	203	0.35	0.64
	76	0.16	0.29
900	190	0.39	0.71
	203	0.42	0.76
	76	0.21	0.38
1200	190	0.53	0.95
	203	0.56	1.02

NOTES:

i. Fastener spacing of 76 mm is equivalent to fastening every crest of a corrugated iron roof.

ii. Fastener spacing of 1 90 mm is equivalent to fastening every crest of a *Trimdek* roof.

iii. Fastener spacing of 203 mm is equivalent to fastening every crest of a *Kliplok* roof.

iv. It has been assumed that all glazed openings are protected by means of shutters as shown in Section G.

FIGURE B10.11		sign W	ithdra	wal str	ength	(kN
FIXING OF ROOF CLADDING TO PURLINS	Unsea	soned T	imber	Seas	soned T	imber
	J2	J3	J4	JD2	JD3	JD4
1/65 x 3.75 ¢ plain shark nail (45 mm penetration into receiving member)	,59	.50	.45	.77	.50	.33
1/75 x 3.75 ¢ plain shank nail (55 mm penetration into receiving member)	.72	.61	.55	.94	.61	.41
Applicable only to cladding of 0.42 base metal thickness or greater.	-			_		-
1/65 x 3.75 ¢ twisted shank nail (45 mm penetration into receiving member)	.59	.50	.45	.77	50	.33
ar 1/75 x 3.75 ¢ twisted shank nail (55 mm penetration into receiving member)	.72	.61	.55	.94	.61	.41
Applicable only to cladding of 0.42 base metal thickness or greater.						
III) 1/65 x 3.75 ¢ annular grooved nail (45 mm penetration into receiving member)	1.2	1.0	.95	1.6	1.0	.72
1/75 x 3.75 ¢ annular grooved nail (55 mm penetration into receiving member)	1.4	1.3	1.2	1.9	1.3	.88
 Applicable only to cladding of 0.42 base metal thickness or greater. 	-					
No. 14 Type 17 screw with cyclone washer assembly (45 mm penetration into receiving member)	32	23	1.8	3.9	2.8	2.3

C1 TYPES OF HOUSES

C1.1 General

Masonry houses considered are restricted to 2 storeys in height and consist of the following:

(a) The footings can either be of reinforced masonry or of reinforced concrete.

(b) Some or all of the walls in any storey must be of partially or fully grouted concrete cored block masonry or 150 or 200 mm nominal thickness with the following limitations:

i) Timber framed walls must not vertically support masonry walls; and

ii) No masonry wall must be of lesser thickness than any masonry wall above it.

(c) Walls which are not of masonry must be of light timber framing to Section B.

(d) Ceilings, roof framing and upper storey floor must be of timber to Sections B and E, except that the ground floor may be of concrete slab-on-ground to Section D5.

FIGURE C1.2: TYPES OF MASONRY HOUSES CONSIDERED

C1.2 Types of Houses

The types of houses considered are shown in Figure C1.2. These consist of walls of:

(a) fully-grouted masonry for both storeys or for a single storey or for a foundation wall and the single storey

(b) timber framed and lightly clad walls for the upper storey, supported on a lower storey of fully or partially grouted masonry

(c) partially grouted masonry for a single storey; and

(d) partially grouted masonry for a foundation wall and a single storey supported by it.

C2 MATERIALS AND WORKMANSHIP

C2.1 Materials

(a) All concrete must be 17.5 MPa but 10 MPa concrete may be used for sub-footing.

Mix ratios are given in Table C2.1 for locally produced 10 MPa and 17.5 MPa concrete.

(b) Concrete blocks must have a minimum compressive strength of 9 M Pa over the nett area. The actual dimensions of the concrete blocks must be 10 mm less than the nominal dimensions of $150 \times 400 \times 200$, and $200 \times 400 \times 200$ to allow for the thickness of mortar.

(c) All steel reinforcement and other embedded steel must be cleaned of any rust, dirt and oil before use. The epoxy coating of reinforcement and of all embedded steel is strongly recommended in areas close to the sea and other corrosive environment. The use of galvanised reinforcement and other embedded steel to retard corrosion must depend on an assurance that the cement used for the grout and mortar is free of calcium hydroxide. If this chemical is present it would attack the galvanising. Another precaution with the use of galvanised steel is that every item of steel used must be galvanised. This includes even wire ties. If this is not done galvanic corrosion can take place.

NOTE: A patented chemical additive Z-12/C, is available for use with sea water and unwashed saline aggregate for making concrete of good quality and durability. Reinforcing bars do not easily corrode and destroy the concrete as would ordinarily be the case when using sea water and saline aggregates. The product is manufactured by Concrete Hitech (Holdings) Ltd., 15 Avenue Victor Hugo, 75116, Paris, France.

(d) The grout used must develop a compressive strength of 17.5 MPa at 28 days after pouring. The use of fine grout (only cement, sand and water) is allowed only for grout spaces of less than 60 mm. All larger grout spaces must be grouted with coarse grout consisting of cement, sand and 5 to 13 mm or 4 to 19 mm aggregate, and water. Coarse grout may contain suitable admixtures to improve workability.

Mix ratio for 1 7.5 MPa grout is given in Table C2.1.

COMPRESSIVE MIX RATIOS BY VOLUME STRENGTH WATER CEMENT SAND COARSE AGGREGATE 10 MP a concrete 1 1 2.5 3 of 20 mm agg. 17.5 MPa concrete 3.3 of 20 mm agg. 0.9 1 3.2 17.5 MPa grout 1.1 1 3 2.7 of 10 mm agg.

TABLE C2:1MIX RATIOS FOR CEMENT AND GROUT

NOTE: The quantity of water given is the maximum allowable and must be reduced with increase in moisture content of sand or aggregate.

(e) Mortar for masonry must consist of 1 part of cement, 3 parts of sand and sufficient water. It may also contain hydrated lime or a suitable admixture to improve workability. If lime is added, the sand-lime mixture must be allowed to stand for 24 hours before the cement is added and the mortar used. Mortar must not be used once 1½ hours have passed after the addition of cement to the mix. To produce mortar of consistently the right quality, the volumes of materials must be measured using buckets or gauge boxes and not shovelled direct from the stockpile or cement bag into the mixer. A dry bucket must be reserved for measuring cement quantities. The water must be added carefully from a measured container and not directly from the end of a hose pipe.

C2.2 Workmanship

The quality of workmanship must be of a standard conforming to good trade practice.

The accurate positioning of starter bars is very important in order to maintain the quality of the finished masonry.

Clean-out openings are desirable at the bottom row of blocks in the cells containing reinforcement. The strength of the masonry, particularly of bracing walls is very much dependent on the quality of g routing. The clean-out pocket would allow thorough cleaning of the cells before grouting.

Grouting must be done only after the mortar joints have gained enough strength to withstand the pressure of the grout and to allow thorough cleaning. The grout must be so rodded and worked that it fully fills the cavities without segregation. Horizontal grout joints must be 20 mm below the uppermost masonry units. The upper surface of the grout must be protected from weather.

The maximum lift of grout must be limited to 1200 mm if the grout space is not less than 50 mm in the least dimension. Otherwise the lift should be restricted to 400 mm.

Temporary bracing as required must be provided for masonry walls to resist lateral loads during construction.

In very hot and dry conditions the masonry blocks may be kept lightly damp before use. Mortar and grout must not be mixed in quantities that would dry out before use. The work may be kept damp by a light fog spray for 24 hours after laying.

C3 WALLS

C3.1 General

Walls serve the following functions:

(a) Provide an envelope to the living space and therefore privacy and protection from the elements ; and

(b) Where so designed (known as structural walls), take vertical downward loads from the roof and suspended floors, vertical uplift loads from wind acting through the roof membrane and horizontal loads from wind effects.

A1.1.1 The limitations on the number and height of storeys for 150 mm and 200 mm walls, are as follows:

(c) 150 mm or 200 mm fully grouted walls can be used up to a height of 2 storeys.

(d) Partially grouted walls of either thickness are limited to a single storey or the top storey of 2 storeys.

(e) The height of any storey must not exceed 3.0 m.

C3.1.1 All structural walls (see C3.2) must be centrally reinforced both vertically and horizontally to the details given in Table C3.1.2. It must be noted that there are further restrictions on the spacing of reinforcement for bracing panels (see C3.5 and Figure C3.5B).

Vertical bars must be provided:

- (a) at all comers and ends of walls
- (b) on each side of .all wall openings 400 mm wide or more (see Fig. C3.1.2A & B) , and

(c) at either side of shrinkage control joints (see Fig. C3.1.3A). Temporary bracing as required must be provided for masonry walls to resist lateral loads during construction.

TABLE C3.1.2:

REINFORCEMENT FOR STRUCTURAL WALLS

1.1.2	150m	m Wall	200mm Wall				
Wall types	Vertical	Horizontal	Vertical	Horizontal			
	Reinforcement	Reinforcement	Reinforcement	Reinforcement			
Fully	D12@	D16@	D12 @	D16 @			
grouted	800 mm	800 mm	800 mm	800 mm			
Partially grouted	D 12 @ 800 mm	BB	D12@ 800 mm	4 D12 or 2 D16 @ 2800 mm			

NOTE:

- **1.** BB implies that the bond beams provided (see C3.6) serve the purpose.
- **2.** In bracing panels (see C3.5) of fully g routed masonry the spacing of horizontal reinforcement must be the minimum of
 - (a) Half the panel's length or height, and
 - (b) The values in this table.

Vertical reinforcement must be located in the cells containing starter reinforcement from footings or from the lower structural wall. It must extend from the footing to the bond beam next above and from the lower to the upper bond beams.

Horizontal reinforcement is required just below all openings. This is also required above small openings over which lintels are not provided. Such horizontal reinforcement above and below openings must extend at least 600 mm beyond either side of the opening (see Figure C3.1.2A & B).

FIGURE C1.2: TYPES OF MASONRY HOUSES CONSIDERED

FIGURE C3.1.2B: REINFORCEMENT DETAILS AROUND OPENINGS IN WALLS

C3.1.2 Any wall in excess of 8 m length must have shrinkage control joints to the details of Figure C3.1.3A

FIGURE C3.1.3A: SOME METHODS OF PROVIDING SHRINKAGE CONTROL JOINTS

The cavity on each side of the joint must be reinforced and grouted. The horizontal reinforcement for the wall must be discontinued at the joint. However, the horizontal reinforcement of bond beams and lintels must be continuous across the joint. The control joints on external walls must be weather and vermin proof.

Shrinkage control joints are to be located at:

- intervals of 5 to 8 m along straight walls
- major changes in wall height
- near return angles of walls in the case of floor plans other than a simple rectangle or square
- near wall intersections
- changes in wall thickness.

Some of these locations are illustrated in Figure C3.1.3B.

FIGURE C3.1.3B: LOCATION OF CONTROL JOINTS AGAINST SHRINKAGE

C3.2 Structural Walls

Structural walls including foundation walls are designed to take horizontal loads and need to have bond beams and bracing panels built into them. The function of the bond beam is to transfer horizontal loads to the bracing walls. These are walls containing bracing panels. The panels resist the racking loads transferred by the bond beams. Figure C3.2 explains the role of bond beams and bracing walls.

The details of walls in this manual are such that once the provisions for horizontal loads have been met by using the appropriate tables the walls would safely carry the required vertical loads, both downward and wind uplift.

NOTE: When the direction of the horizontal load changes by 90°, the roles of the bracing wall and the braced wall are reversed.

FIGURE C3.2: ROLE OF BOND BEAMS AND BRACING WALLS

C3.3 Materials for Structural Walls

The materials considered for structural walls are reinforced masonry of 150 mm or 200 mm nominal thickness hollow core concrete blocks. The walls are either fully or partially grouted.

C3.4 Bracing Demand

The demand for bracing arises from loads. Table C3.4 gives the bracing demand against wind loads, expressed in bracing units. (100 bracing units are equal to a strength of 5 kN. There is no need to apply this information in the use of this Manual).

C3.4.1 The bracing demand for wind has to be calculated for the two principal directions of the building. Use the following steps for these calculated:

STEP 1

Select from Table C3.4 the appropriate value of bracing demand per metre length of wall, depending on the type of storey, and the roof slope.

STEP 2

Multiply the appropriate value of unit bracing demand from Step 1, with the length in metres of the external wall facing the wind in each direction. This will give the total bracing demand against wind for each of the two directions.

STEP 3

Multiply the appropriate value of the unit bracing demand from Step 1 with twice the length of each line of external wall and four times the length of each line of external wall. The resulting figures would give the local bracing demand for the external and internal walls.

TABLE C3.4:

BRACING DEMAND (BRACING UNITS) - WIND

Location of Storey	Maximum Slope of Roof (degrees)	Minimum bracing units required per metre when exposed to design windspeed (m/s) of				
	10	41				
Single of Ten Storey	15	41				
Single of Top Storey	20	49				
	25	71				
	10	64				
Foundation Wall	15	64				
of one otorey	20	77				
	25	112				
	10	119				
Lower of Two Storevs	15	119				
1 110 0101033	20	142				
and the second second	25	207				

C3.5 Bracing Panels

Tables C3.5A and C3.5B give details of the capacity of bracing panels. The bracing capacity in these tables is expressed in bracing units. (Like in Table C3.4 for the bracing demand). The total bracing capacity of walls in any storey in each direction must match or exceed the maximum bracing demand for that storey for the two directions. For wind loads, the demand is usually different for the two directions.

In using the Tables C3.5A and C3.5B for the calculations of the total bracing capacity of a wall, the following procedure is adopted:

(a) For each storey each length of wall between shrinkage control joints is divided into bracing panels.

(b) Where there are no openings (openings of less than 400 mm x 400 mm spaced at not less than 1.8 m are neglected) in a wall for the full length between the control joints, the height of the wall in the storey to the underside of the bond beam is considered to be the height of the panel and the length of the panel taken as the length between the control joints.

(c) Where there are openings between control joints such as doors and windows, the length of each panel is the length between adjacent openings. The height of each panel is the minimum height of the opening adjoining that panel.

(d) The points mentioned in (a), (b) and (c) are illustrated in an example in Figure C3.5A. The calculation of the bracing capacity of the total wall in the figure is as follows:

i) If it is a fully grouted wall, the use of Table C3.5A is appropriate. Further assuming that the nominal wall thickness is 150 mm, the capacity of each panel and of the total wall are as follows:

	length x height	bracing units
Panel 1	1.2 X 2.0	450
Panel 2	1.6 X 1.2	1500
Panel 3	2.0 X 1.2	2400
Panel 4	3.0 X 1.6	(3400 + 3850)/2 = 3625
Panel 5	1.8 X 1.6	(1500 + 2400)/2 = 1950
Panel 6	6.0 X 2.8	5950

Total for 150 mm fully grouted wall

= 15875 bracing units

ii) If it is a partially grouted wall, we have to use Table C3.5B. When we look at the table it is seen that the height allowed for partially grouted 150 mm walls is limited to 2.4 m whereas the height of the wall in the example is 2.8m. Therefore we can use only 200mm thick partially grouted walls. Using the table for the 200mm thick part the capacity is noted down as follows:

	length x height	bracing units
Panel 1	1.2 X 2.0	450
Panel 2	1.6 X 1.2	1500
Panel 3	2.0 X 1.2	2400
Panel 4	3.0 X 1.6	(3400 + 3850)/2 = 3625
Panel 5	1.8 X 1.6	(1500 + 2400)/2 = 1950
Panel 6	6.0 X 2.8	5950
Total for 150	mm fully grouted wall	= 15875 bracing units

It will be seen that although the partially grouted wall is 200 mm thick, its bracing capacity is less than 1/6 of the fully grouted 150 mm thick wall. It is an Indication of the extreme importance of the quality and throughness of grouting. If a "fully grouted wall" has many unfilled pockets or has dirt and grit contaminated pockets, the bracing strength of the wall will be far lower than the values given in Table C3.5(A)

(e) Where the bracing demand is such that a partially grouted set of bracing walls does not provide enough capacity and a fully grouted set of walls gives excessive capacity, It is permissible to use a suitable mix of fully grouted and partially grouted walls. However if in any particular wall some of the panels are fully grouted and some only partially grouted, the effect of the partially grouted panels must be neglected. For instance, in Figure C3.5A if the panels 2, 3 and 6 are fully grouted and the other panels only partially, then the total bracing capacity of the wall is only the sum of the capacities of panels 2, 3 and 6.

In order for a panel to qualify for the bracing capacity given in Tables C3.5A and B, the spacing of the horizontal reinforcement must be to the detail given in Figure C3.5B. The other details of reinforcement are as given in Table C3.1.2.

In order to check if the bracing capacity is adequate to meet the bracing demand, the following procedure must be followed:

STEP 1

Calculate the bracing capacity of each line of external and internal walls as illustrated earlier in this clause.

STEP 2

Check to see if the capacity of each line is more than the local demand for that line as was determined in the second part of Step 4 at Clause C3.4.2.

CO MMENT

If the capacity provided is not adequate, it may be increased by changing from partial to full grouting, increasing wall thickness, eliminating some openings or reducing their size, or a permitted combination of these.

STEP 3

Check to see if the sum of the capacity of all the lines of bracing walls in each principal direction is more than the demand for that direction as determined in the first part of Step 4 at Clause C3.4.2.

COMMENT

If the capacity is not adequate, it can be increased by corrective steps suggested in the comment

FIGURE C3.5A: EXAMPLES OF BRACING PANELS

NOTE: The value of s, the spacing of the horizontal bars in the panel must be no more than the least of p.2 or d/2 or the value give in Table C3.1.2..

FIGURE C3.5B: BRACING PANEL IN FULLY GROUTED MASONRY BETWEEN DOOR AND WINDOW OPENINGS

]	
	Π
	2
	Л >

CAPACITY OF FULLY GROUTED WALL BRACING PANELS IN BRACING UNITS

3.0	2.8	2.6	2.4	2.2	2.0	1.8	1.6	1.4	1.2	1.0	0.8		2.8 (max)	2.6	2.4	2.2	2.0	1.8	1.6	1.4	1.2	1.0	0.8	(m)	Panel height		
55	100	100	150	150	200	300	400	600	750	950	1100		50	50	100	100	150	200	300	400	450	600	800	0.8			
200	250	300	400	500	600	750	900	1000	1300	1500	1600		200	250	300	350	450	550	650	750	1000	1100	1300	1.2			
450	550	650	800	1000	1250	1300	1550	1750	2000	2150	2300		400	500	600	750	950	1000	1150	1300	1500	1550	1600	1.6			
800	950	1150	1400	1700	2100	2600	3250	3250	3250	3250	3250		700	850	1000	1250	1550	1900	2400	2400	2400	2400	2400	2.0			
1250	1500	1750	2100	2500	3050	3700	3900	3900	3900	3900	3900	1	1100	1300	1550	1850	2250	2750	2900	2900	2900	2900	2900	2.4			
1800	2100	2450	2850	3400	4050	4550	4550	4550	4550	4550	4550		1550	1800	2100	2500	3000	3400	3400	3400	3400	3400	3400	2.8			
2390	2750	3200	3700	4350	5100	5200	5200	5200	5200	5200	5200		2050	2350	2750	3200	3750	3850	3850	3850	3850	3850	3850	3.2			
3050	3450	4000	4600	5300	5850	5850	5850	5850	5850	5850	5850	-	2550	2950	3400	3900	4300	4300	4300	4300	4300	4700	4300	3.6		-	
3700	4200	4800	5500	6300	6500	6500	6500	6500	6500	6500	6500	Nall thic	3100	3550	4050	4650	4800	4800	4800	4800	4800	4800	4800	4.0	Length	Wall thic	
4400	4950	5600	6400	7150	7150	7150	7150	7150	7150	7150	7150	kness 2	3650	4150	4700	5300	5300	5300	5300	5300	5300	5300	5300	4.4	of pan	kness	
5100	5750	6450	7300	7800	7800	7800	7800	7800	7800	7800	7800	100 mm	4250	4750	5400	5750	5750	5750	5750	5750	5750	5750	5750	4.8	el (m)	150 mm	
5850	6500	7300	8200	8450	8450	8450	8450	8450	8450	8450	8450		4800	5400	6050	6250	6250	6250	6250	6250	6250	6250	6250	5.2			
6550	7300	8150	9100	9100	9100	9100	9100	9100	9100	9100	9100		5400	6000	6700	6700	6700	6700	6700	6700	6700	6700	6700	5.6			
7300	8100	9000	9750	9750	9750	9750	9750	9750	9750	9750	9750		5950	6600	7200	7200	7200	7200	7200	7200	7200	7200	7200	6.0			
8050	8850	9800	10400	10400	10400	10400	10400	10400	10400	10400	10400		6550	7250	7700	7700	7700	7700	7700	7700	7700	7700	7700	6.4			
8750	9650	10650	11100	11100	11100	11100	11100	11100	11100	11100	11100		7100	7850	8150	8150	8150	8150	8150	8150	8150	8150	8150	6.8			
9500	10400	11450	11750	11750	11750	11750	11750	11750	11750	11750	11750		7650	8450	8650	8650	8650	8650	8650	8650	8650	8650	8650	7.2			
10200	11200	12300	12400	12400	12400	12400	12400	12400	12400	12400	12400		8250	9050	9100	9100	9100	9100	9100	9100	9100	9100	9100	7.6			
10900	11950	13050	13050	13050	13050	13050	13050	13050	13050	13050	13050		8800	9600	9600	9600	9600	9600	9600	9600	9600	9600	9600	8.0			Į

TABLE
C3.5E
ï

CAPACITY OF PARTIALLY GROUTED WALL BRACING PANELS IN BRACING

3.0 (max)	2.8	2.4	2.2	2.0	1.8	1.6	1.4	1.2	1.0	0.8		2.4 (max)	2.2	2.0	1.8	1.6	1.4	1.2	1.0	0.8	ţ	Panel height		
-				-	50	50	50	100	100	150		-	4		50	50	50	50	100	100	0.8			
50	50	50	50	50	100	100	150	150	200	200		50	50	50	50	100	100	150	150	150	1.2			
50	50	100	100	100	150	200	200	250	250	300		100	100	100	100	100	150	150	200	200	1.6			
100	100	150	150	200	250	300	400	400	400	400		150	150	200	250	300	300	300	300	300	2.0			
150	200	200	250	300	350	450	450	450	450	450		200	250	300	350	350	350	350	350	350	2.4			
200	250	300	350	400	500	550	550	550	550	550		300	350	400	450	450	450	450	450	450	2.8			
300	350	400	450	550	600	600	600	600	600	600		350	400	500	500	500	500	500	500	500	3.2			
350	400	500	550	650	700	700	700	700	700	700	¥	450	500	550	550	550	550	550	550	550	3.6		5	
450	500	600	700	750	750	750	750	750	750	750	all thick	550	600	600	600	600	600	600	600	600	4.0	Length	all thick	
550	600	700	800	850	850	850	850	850	850	850	ness 20	650	700	700	700	700	700	700	700	700	4.4	of panel	ness 15	
650	700	800	900	900	900	900	900	900	900	900	0 mm	700	750	750	750	750	750	750	750	750	4.8	(m	0 mm	
700	800	900	1000	1000	1000	1000	1000	1000	1000	1000		800	800	800	800	800	800	800	800	800	5.2			
800	900	1000	1100	1100	1100	1100	1100	1100	1100	1100		850	850	850	850	850	850	.850	850	850	5.6			
900	1000	1100	1100	1150	1150	1150	1150	1150	1150	1150		900	900	900	900	900	900	900	900	900	6.0			
1000	1100	1200	1250	1250	1250	1250	1250	1250	1250	1250		1000	1000	1000	1000	1000	1000	1000	1000	1000	6.4			
1100	1200	1300	1300	1300	1300	1300	1300	1300	1300	1300		1050	1050	1050	1050	1050	1050	1050	1050	1050	6.8			
1150	1300	1400	1400	1400	1400	1400	1400	1400	1400	1400		1100	1100	1100	1100	1100	1100	1100	1100	1100	7.2			1
1200	1350	1450	1450	1450	1450	1450	1450	1450	1450	1450		1150	1150	1150	1150	1150	1150	1150	1150	1150	7.6			
1350	1450	1550	1550	1550	1550	1550	1550	1550	1550	1550		1250	1250	1250	1250	1250	1250	1250	1250	1250	8.0			

C3.6 Bond Beams

Bond beams serve the following purpose:

(a) tie the masonry wall together

(b) transfer lateral loads on the walls in which they are located, to bracing walls at right angles to them

(c) provide the anchorage required for roof and floor members.

Bond beams must be provided at the top of all masonry walls and at lower levels corresponding to the location of the suspended floor in a two-storey house or a house with foundation walls. A bond beam is considered to be a "top bond beam" if it is not overlain by any masonry, timber frame, floor or other superstructure. Other bond beams are known as intermediate bond, beams, such as on top of foundation walls.

The requirements for intermediate bond beams are more stringent than for top bond beams.

The maximum span of a bond beam is normally 5 m. The span is the spacing of the bracing walls to which the bond beam transfers horizontal loads. However, a line of bracing walls is considered to function in a line if there is no offset greater than 2 m between panels in the same line of internal walls. (See Figure C3.6). When this happens, the maximum allowable span can be up to 7 m.

The details of top and intermediate bracing beams are given in Table C3.6.

Sloping bond beams must be provided at the top of gable shaped walls and be continuous with adjoining bond beams. The intersection of bond beams must be detailed as for footings shown in Figure D4.6.

FIGURE C3.6: BRACING BEAMS AND BRACING WALLS

TABLE C3.6:

BOND BEAM SIZES HEIGHT OF 3.0 M BETWEEN BOND BEAMS

Тор Во	ond B	leam	Intermediate Bond Beam					
C 150 x 200	or	M/C 200 x 200	C 150 x 200 or M/C 200 x 200					
2 D12		2 D12	2 D12 2 D12					
C 150 x 200	or	M/C 200 x 200	C 150 x 200 or C 200 x 200					
2 D12		2 D12	2 D16 2 D16					
C 150 x 400 d	or	M/C 200 x 200	M/C 150 x 400 or M/C 200 x 200					
4 D12		2 D16	4 D12 2 D16					
C 150 x 400	or	C 200 x 400	M/C 150 x 400 or M/C 200 x 40					
4 D16		4 D16	4 D16 4 D12					
C 150 x 400 d	or	C 200 x 400	M/C 150 x 400 or M/C 200 x 400					
4 D16		4 D16	4 D16 4 D16					
	Top Bo C 150 x 200 2 D12 C 150 x 200 2 D12 C 150 x 400 4 D12 C 150 x 400 4 D16 C 150 x 400 4 D16	Top Bond B C 150 x 200 2 D12 or C 150 x 200 2 D12 or C 150 x 200 2 D12 or C 150 x 400 4 D12 or C 150 x 400 4 D12 or C 150 x 400 4 D16 or C 150 x 400 4 D16 or	Top Bond Beam C 150 x 200 2 D12 or M/C 200 x 200 2 D12 C 150 x 200 2 D12 or M/C 200 x 200 2 D12 C 150 x 400 4 D12 or M/C 200 x 200 2 D12 C 150 x 400 4 D12 or M/C 200 x 200 2 D16 C 150 x 400 4 D16 or C 200 x 400 4 D16 C 150 x 400 4 D16 or C 200 x 400 4 D16					

* Refer to Clause 3.6

NOTE:M stands for masonry bond beamC stands for concrete (17.5 MPa) bond beam

All reinforcement to be placed as in sketch

C3.7 Lintels

Lintels must be provided over all openings, such as doors and windows. The width of the lintel must be the same as the thickness of the wall. Lintels must bear at their ends for 200 mm. The span of the lintel is the clear width of the opening. Table C3.7 and Figure C3.7 give the dimensions and reinforcement for lintels of various spans.

200 deep lintels must have R6 ties at 600 mm

400 deep lintels must have R6 ties at 200 mm

FIGURE C3.7: REINFORCED CONCRETE AND MASONRY DETAILS

TABLE C3.7:

LINTEL SIZES

A STATE OF		10	LINTEL SUPPORTING										
Width of Lintel (mm)	Maximum Span of Lintel	Light Roof Only	Light Roof and Light Timber Framed Wall	Light Roof, Light Timber Framed Wall and Floor	Light Roof and Masonry Wali Only	Light Roof, Masonry Wall and Timber Floc							
	1600	C1/M1	C1/M1	C1/M1	C2/M1	C2/M1							
150	2000	C2/M1	C1/M1	C1/M1	C2/M1	C2/M1							
150	2600	C3/M2	C2/M2	C2/M1	C2/M2	C2/M2							
	3000	C4/M3	C3/M2	C3/M2	C4/M3	C4/M3							
	1600	C1/M1	C1/M1	C1/M1	C1/M1	C2/M2							
	2000	C1/M1	C1/M1	C2/M2	C2/M1	C2/M2							
200	2600	C2M2	C2/M2	C3/M2	C3/M2	C3/M2							
	3000	C4/M3	C4/M3	C3/M3	C4/M3	C4/M3							

C3.8 Combination of lintels and bond beams

In some cases it may become necessary to combine a bond beam and a lintel. Where the lintel is completely located within the middle 2/3 of the span of the bond beam, the combined beam/ lintel must be of the larger of the two individual sizes and must have not less than the maximum of the reinforcement for either. The disposition of the reinforcement must be similar to the example shown in Figure C3.8A so that the combination beam can take either the horizontal loads of the bond beam or the vertical loads of the lintel.

If the lintel is located in part or whole outside the middle 2/3 of the span of the bond beam, the reinforcement provided must be the sum of the reinforcement required for the bond beam and lintel. The disposition of the reinforcement must be as shown in Figure C3.8B.

A_{st} (2D16) ~ A_{st} (4D12)

Note: These cross-sections are only examples

Steel required is the maximum of either for lintel or bond beam Steel must be located at the correct depth dictated by the lintel and correct horizontal position dictated by bond beam.

FIGURE C3.8B: PART OF LINTEL LOCATED OUTSIDE MIDDLE 2/3 OF BOND BEAM SPAN

D1 GENERAL

D1.1 For Timber Floors

(a) The foundation and sub-floor framing system to resist vertical loads must be such that the ground floor joists are directly supported on bearers which are fixed to piles embedded in concrete into the ground.

(b) Anchor piles must be provided under all load bearing walls, so as to resist wind uplift loads.

(c) Floor piles must be used under all areas supporting only a floor.

(d) Dimensions of anchor piles and floor piles are given in Figure D3.

(e) It has been assumed that the minimum bearing capacity of the soil is 100 kPa (i.e. 1 Ton per sq. foot).

D1.2 For Concrete Floors and Footings

- (a) Footings must be provided under all walls as described in Section D4.
- (f) Compacted granular fill must be provided under footings and slab on ground floors.
- (g) Dimensions and reinforcement details for footings are given in Section D4.
- (h) Details for slab on ground floors are given in Section D5.

D2 SITE REQUIREMENTS

The site must be well drained and cleared of all organic material. The foundation must be well compacted and consist principally of granular material. Houses must not be built in potentially unstable locations such as in or near slopes which might slide during heavy rains or earth tremors.

In uneven but stable ground the base of any footing (or sub-footing) must be so located that it is at least 1.0 m horizontally away from the finished ground surface (see Figure D2.1).

Soil earth etc. must not be allowed to bear against any wall unless the wall and the associated footings have been specifically designed as retaining walls.

FIGURE D2.1: LOCATION OF FOOTINGS IN UNEVEN GROUND

D3 ANCHOR PILES AND FLOOR PILES

Dimensions for anchor piles and floor piles are given in Figure D3. An anchor pile is required to resist uplift loads and must be placed under all loadbearing walls. A floor pile is required to carry floor loads only.

TABLE D3.1:

SIZE OF ROUND TIMBER PILES

COLUMN DIAMETER (mm)
150
200
225

NOTE: Timber posts to be treated in accordance with Local Preservative treatment requirements.

TABLE D3.2:

SIZE OF REINFORCED CONCRETE AND MASONRY PILES

HEIGHT OF COLUMN ABOVE GROUND LEVEL (mm)	PLAN SIZE OF COLUMN (mm x mm)	REINFORCEMENT			
≤ 2400	C 200 x 200 M 300 x 300	4 R10			

D4 FOOTINGS

All masonry walls must be fully supported by a footing of reinforced masonry or reinforced concrete. The dimensions of reinforced concrete footings are given in Figure D4.1 and Table D4.1. The minimum thickness of footings must be 175 mm.

FIGURE D4.1: REINFORCED CONCRETE FOOTINGS

TABLE D4.1:

REINFORCED CONCRETE FOOTING DIMENSIONS

Wall thickness t (mm)	Footing width w (mm)	
	Single Storey	Double Storey
150	300	300
200	300	400

Dimensions of reinforced masonry footings are given in Figure D4.2.

FIGURE D4.2: REINFORCED MASONRY FOOTING

Some site conditions may call for a sub-footing. When sub-footings are used, the dimensions of the main footings are altered. Dimensions of sub-footings in 10 MPa concrete are given in Figure D4.3. The figure also shows the changes to the dimensions of the main footings.

FIGURE D4.3: MASS CONCRETE SUB-FOOTING

The reinforcement to be provided for the footings is detailed in Figure D4.4. The reinforcement must be tied with R6 ties at 600 mm centres. The clear cover of 75 mm shown in the figures may be reduced to 50 mm in the case of masonry footings. The lap length of bars must be not less than 40 bar diameters for reinforcement concrete and 60 bar diameters for masonry footings.

FIGURE D4.4: REINFORCEMENT DETAILS

Where steps in footings are required, the reinforcement must be as detailed in Figure D4.5.

FIGURE D4.5: STEPPED FOOTING

At intersection of footings the arrangement of reinforcement must be as detailed in Figure D4.6.

FIGURE D4.6: REINFORCEMENT AT FOOTING INTERSECTIONS

Vertical starter reinforcement of the diameter, type and spacing matching the wall reinforcement must be provided in every footing to a free standing height of not less than 600 mm. The starter reinforcement must be anchored and tied to the footing reinforcement with at least one 90° bend.

The footing of an isolated structural wall must be extended beyond the line of the wall till it becomes the footing of at least another masonry wall. For instance in the case of a transverse masonry bracing wall with one end free, the footing at the free end must continue till it supports another masonry wall (Fig. D4. 7).

FIGURE D4.7: EXAMPLE OF FOOTING OF ISOLATED STRUCTURAL WALL

In the case of structural walls isolated at both ends, the footings must be not less than 300 mm wide and 400 mm deep and reinforced with 4D16 bars and R10 ties at 200 mm.

D5 CONCRETE SLAB-ON-GROUND FLOORS

D5.1 General

D5.1.1 The finished level of a concrete slab-on-ground floor must be a minimum height of 150 mm above the adjoining finished ground level for unpaved surfaces and 100 mm above the adjoining finished ground level for paved surfaces.

D5.1.2 The finished ground level adjoining the concrete slab-on-ground must be formed with a fall away from the building of not less than 1 in 25 for a distance of at least 1 m.

D5.1.3 Concrete slab-on-ground floors must have their edges thickened (see Fig. D5.1.5) along the entire perimeter of the wall.

D5.1.4 The grade of concrete for slab-on-ground concrete floors must be a minimum of 17.5 MPa.

D5.1.5 Slab-on-ground floors must have a continuous vapour barrier between the ground and the slab as shown in Figure D5.1 .5.

FIGURE D5.1.5: EDGE THICKENING OF CONCRETE SLAB-ON-GROUND FLOORS

D5.1.5 Slab-on-ground floors must have a continuous vapour barrier between the ground and the slab as shown in Figure D5.1 .5.

D5.1.6 The vapour barrier must be:

(a) of acceptable durability and strength to withstand the conditions of installation and end use

(b) laid on a suitably prepared surface for the type of material used as barrier.

Various vapour barriers are available. Typical examples are polyethylene sheet, reinforced polyethylene sheet, bituminous sheets, asphalt and rubber emulsions.

D5.2 Edge thickening

The edge thickening of ground slabs must comply with the requirements of Clause D4. In addition it must reinforced at the top with at least one D12 bar.

D5.3 Granular base

D5.3.1 Granular fill material where required must be placed in layers not exceeding 100 mm thick over the area beneath the proposed ground slab so that the total thickness of the granular base is not less than 100 mm nor more than 600 mm.

D5.3.2 Granular fill material must be gravel, or crushed rock or hard coral.

D5.3.3 The top surface of the granular base must be treated as necessary to protect the vapour barrier from damage.

D5.3.4 The rise of sub-soil water by capillary action must not be allowed to approach the ground slab. Where the depth to the sub-soil water level is less than 3.5 m in clay or silt, 2.25 m in fine sand

or 0.8 m in coarse sand, it will be necessary to provide a capillary break beneath the ground slab. If the material beneath the slab is all gravel, crushed rock or hard coral to a minimum thickness of 100 mm and action is taken to prevent soil from clogging the pores between the pieces of gravel, there is no risk of capillary rise of water. If this is not the case, the capillary break provided must have the following grading:

<0 5.5 % to pass a 2.2 mm sieve.

100 % to pass a 19 mm sieve for any depth of fill or pass a 37.5 mm sieve for fill thickness in excess of 150 mm.

D5.4 Ground slabs

D5.4.1 Except as required for edge thickening and by D5.5 beneath internal loadbearing walls, the minimum thickness of a domestic ground slab must be:

(a) 100 mm when placed on a vapour barrier laid directly on the granular fill, or

(b) 75 mm when placed on a vapour barrier laid on a specially prepared granular base or concrete blinding. Refer to Figure D5.4.

FIGURE D5.4: ALTERNATIVE CONSTRUCTION OF GROUND SLABS

D5.4.2 Ground slab reinforcement must extend to within 75 mm of the outside edge of the thickened slab when it is cast integrally with the ground slab. Also:

(a) where the maximum plan dimension of concrete cast in one operation does not exceed 15 m: provide 668 (F52) welded reinforcing mesh lapped 225 mm at joints

(b) where the maximum plan dimension of concrete cast in one operation exceeds 15 m but does not exceed 25 m provide either:

i) 665 (F62) welded reinforcing mesh lapped 225 mm at joints, or

ii) D10 bars at 350 mm centres both ways tied at each fourth crossing ; and

(c) where the thickened edge is cast separately from the ground slab and it supports more than one storey, the ground slab must be tied to it with R6 bars at not less than 600mm centres, anchored into the thickened edge and lapped not more than 300 mm with the slab reinforcement.

D5.4.3 Reinforcing steel must have a cover of 30 mm from the top surface of the ground slab and must be placed in such a manner as to avoid damage to the vapour barrier.

D5.5 Support of loadbearing internal walls

The slab beneath a loadbearing internal wall must be 175 mm thick over a minimum width of 300 mm and reinforced with 2/D12 bars as shown in Figure D5.5.

FIGURE D5.5: GROUND SLABS BENEATH INTERNAL LOADBEARING WALLS

E1 GENERAL

This section provides some construction details for houses. It is divided into three parts. E2 shows roof details, E3 wall details and E4 floor details. The details do not cover all contingencies and are necessarily general in nature. These would however satisfy a wide range of construction requirements.

E2 ROOF CONSTRUCTION DETAILS

FIGURE E2.1: TIMBER BRACING FOR ROOFS CONSTRUCTED OF RAFTERS

Higher than average uplift pressures occur at the shaded area (Figure E2.2) along the edges and ridge of the roof during high winds. The associated rafters, purlins and fasteners are therefore spaced closer as shown in Figures E2.1, E2.3, E2.4 and E2.5.

FIGURE E2.2: AREAS OF ROOF WHERE LOCAL PRESSURE FACTORS APPLY

NOTE:

i. It is preferable to locate the extra purlins at gables midway between the normal purlins. This will reduce the forces on the roofing sheets.

ii. Care to be taken to not split purlins when nailing, especially if purlins are smaller than 50×100 .

iii. Select all fasteners on the basis of forces and capacities given in the relevant tables in FIGURE E2.3: ROOF FRAMING AT GABLE END.

FIGURE E2.4: RAFTER ROOF FRAMING DETAILS

FIGURE E2.5: FLAT STRAP BRACING FOR ROOFS

FIGURE E2.6: FIXING OF BARGE FLASHING AT GABLE END

FIGURE E2.7: CONNECTION OF PURLINFIGURE E2.8: CONNECTION AT THE RIDGE

FIGURE E2.9: TRIP-L-GRIP CONNECTOR USED TO SECURE RAFTERS TO TOP PLATES FIGURE E2.10: FIXING OF RAFTER TO THE TOP PLATE WITH GALVANISED STEEL STRAP

FIGURE E2.11: ANCHORING THE TOP PLATE TO THE STUDS

FIGURE E2.13: SHEET LAP DETAIL

FIGURE E2.15: FIXING OF ROOF CLADDING

FIGURE E2.16: OVERLAP DETAIL

E3 WALL CONSTRUCTION DETAILS

FIGURE E3.3: INTERNAL BRACED WALLS NOT SUPPORTING VERTICAL LOADS FROM ROOF OR FLOOR

FIGURE E3.4: TIMBER LINTELS (SAWN) UP TO 1200 LINTEL SPAN

FIGURE E3.7: TOP PLATES SUPPORTI NG ROOFS OF BUILDINGS

FIGURE E3.9: WALL INTERSECTION IN TOP PLATES

FIGURE E3.10: DETAIL OF DRAGON TIE CONNECTION

FIGURE E3.11: CORNER DETAIL FOR PARTIALLY GROUTED MASONRY WALL

FIGURE E3.12: CLEANOUT POCKETS IN WALL FOR GROUT POURS

FIGURE E3.13: METHOD OF GROUTING BLOCK

FIGURE E3.14: LINTELS AND BOND BEAM DETAILS

E4 FLOOR CONSTRUCTION DETAILS

FIGURE E4.2: DETAIL OF FLOOR CONNECTIONS (PARALLEL TO JOISTS)

FIGURE E4.3: DETAIL OF BOUNDARY JOIST SUPPORT

FIGURE E4.4: TIMBER FRAMED WALL ABOVE A CONCRETE MASONRY WALL

FIGURE E4.5: DETAIL OF MASONRY WALL WITH TIMBER FLOOR - PERPENDICULAR TO JOISTS

FIGURE E4.6: DETAIL OF FOOTING - IN LEVEL WITH SLAB

FIGURE E4.7: DETAIL OF STEP-DOWN FOOTING

F1 GENERAL

FIGURE F1.1: AIRCRAFT WING: EXPERIENCES HIGH VERTICAL (LIFT) FORCE AND SMALL HORIZONTAL (DRAG) FORCE

FIGURE F1.2: HOUSE: EXPERIENCES VERTICAL (UPLIFT) FORCES ON ROOF AND HORIZONTAL (SIDE-WAYS) FORCES MAINLY ON WALLS

FIGURE F1.3: EXTERNAL PRESSURES ON WALLS OF A HOUSE

SECTION F -HOUSE FAILURES AND PRECAUTIONS

(a) WINDWARD OPENING - Internal Pressure

(b) LEEWARD OPENING - Internal Suction

FIGURE F1.4: EFFECTS OF INTERNAL PRESSURES RESULTING FROM OPENINGS IN HOUSES

F2 FOUNDATION FAILURES

REMEDY: Provide adequate connections between bearers and piles and braces and piles.

F3 BEARER AND JOIST FAILURES

FIGURE F3.1: FAILURE OF FLOOR BEARER/JOIST CONNECTIONS

FAILURE: Joists rotate under lateral wind load.

REMEDY: Provide solid blocking and/or boundary joists.

FIGURE F3.2: FAILURE OF FLOOR BY JOIST ROTATION

FAILURE: Floor to wall or floor to bearer connections fail

REMEDY: Provide adequate connections between floor and wall and between floor and bearer.

FIGURE F3.3: FAILURE OF FLOOR JOIST TO WALL AND BEARER CONNECTIONS

F4 FAILURE OF WALLS

FAILURE: Gable end wall blows out. REMEDY: Provide lateral support to gable end wall in line of ceiling joists.

FAILURE: Roof and walls blow away. REMEDY: Provide adequate fixing of bottom plates to studs

FAILURE: Internal wall blows over REMEDY: Provide adequate fixing of internal walls at plate level.

FAILURE: Roof blows away leaving walls standing. REMEDY: Provide adequate fixing of top plates to studs.

FAILURE: Wall blows over ands roof lifts REMEDY: Provide adequate fixing of top plates to studs

FAILURE: Wall blows inwards and roof lifts. REMEDY: Provide adequate fixing of bottom plates to studs.

FAILURE: Wall collapses under racking load. REMEDY: Provide the required number and type of braces with adequate nailing.

F5 FAILURE OF ROOF

FAILURE: Tie down of rafter or truss to top plate inadequate for wind force REMEDY: Fix securely at top plate

FAILURE: Tie downof rafter to ridge or under purlin inadequate REMEDY: Fix securely at ridge and under purlin

FAILURE: Under purlin inadequately tied down REMEDY: Fix under purlins securely to structure

FAILURE: Breakage of rafter or other member REMEDY: Provide members of correct size and number

FAILURE: Cantilever rafter breaks at eave overhang REMEDY: Provide rafters of correct size and spacing for cantilever

FAILURE: Trusses collapse longitudinally due to inadequate bracing.

REMEDY: Provide adequate diagonal bracing and ensure cladding is correctly fixed as this provides a considerable amount of bracing.

FAILURE: Ridge Beam not tied down but walls are adequately supported

Holding down bot

REMEDY: Tie Ridge Beam down to foundation structure

FAILURE: Ridge not tied down and walls inadequately supported

FALURE: Roof not tied at ridge but walls are adequately supported

REMEDY: Form Truss in roof by nail plate fixings or provide bracing walls and adequate tie-down.

REMEDY: Tie Rafters together with straps or bolted timber tie

WIND

F6 FAILURE OF ROOF CLADDINGS

FAILURE: Wind lifts roofing off purlins REMEDY: Provide more fasteners through roofing material

FAILURE: Wind lifts roofing off purlins REMEDY: Provide more fasteners through roofing material and a suitable fascia barge flashing adequately fixed. Do not use a rolled edge flashing

FAILURE: Wind lifts roofing and purlins together

REMEDY: Provide adequate fixing of purlins to rafters

F7 CARE AND PRECAUTIONS

F7.1 Checklist for masonry construction

A Before grouting

- 1 Has all debris been removed from the base of the wall?
- 2 Check the wall for plumb. Tolerance 10 mm in 3 m (3/8 inch in 9 feet) within a storey.
- **3** Is the wall straight? Tolerance 5 mm in 10 m (1/4 inch in 33 feet); 10 mm any length over 10m. (Overall position of wall in house presumed checked at first course setting out).
- 4 Has reinforcement been tied to starter bars?
- 5 Reinforcement correctly located in wall or pier? Is there a minimum 6 mm clearance from reinforcement to the face of all shells of masonry?
- 6 Is vertical steel to within 50 mm or 1/4 the length on an individual grouted cell?
- Is vertical steel adequately supported laterally to prevent movement during grouting?
 Support interval (height /bar diameter) not more than 1.2 m/10 mm; 2.4 m/12 mm;
 3.6 m/16 mm.
- 8 Are minimum lap lengths of 300 grade reinforcement 400 mm for 10 mm, 480 mm for 12 mm and 640 mm for 16 mm?
- 9 After cleaning out cells, have clean out pockets been properly closed?
- 10 Is the grout as specified? Not too much water, but workable. Aggregate not too fine.

B After grouting

1 After filling and waiting:

Re-vibrate and top up.

Trowel down expanded grout top.

- 2 At construction joints, if required, lightly brush/wash the grout surface after initial set.
- 3 In hot weather, protect wall top from premature drying out.
- 4 Remove any grout spills on wall surface.

F7.2 Some precautions for builders, homeowners and occupants

F7.2.1 Construction phase

- 1 Use the correct member sizes, connector types and sizes etc. as required by this Manual.
- 2 Use reputable manufacturer's specifications and details where they vary from those shown or prescribed anywhere in this Manual.
- 3 Make sure that all joints are firmly held together.
- 4 Where there are trusses, use nail plates on both sides of the joints.
- 5 Tighten all bolts correctly not loose nor overtight.
- 6 Use the correct sizes of washers with the bolts (refer to Table B10.4.1).
- **7** Keep available or have in place strong shutters for all glazed openings to prevent glass breakage by flying debris.
- 8 Use prefabricated metal connectors and wherever possible predrilled metal straps.
- **9** Use appropriately treated timber for external and internal use. Where in doubt ask Dept. of Forestry or other reputable source.
- 10 Tie all reinforcing rods properly.

- 11 Provide clean out pockets in blocks for grouting.
- 12 Compact grout properly in cores by either using a mechanical vibrator or rodding.
- **13** When site mixing of concrete or grout use the correct mixture of cement, clean water, and aggregate.

F7.2.2 During the cyclone season

- 1 Put window shutters in place as soon as a cyclone warning is issued.
- 2 Keep yard clear of any potential flying debris.
- 3 Trim down branches of trees which may break during a cyclone and become flying debris.
- 4 Keep clear of all glazed openings during a cyclone.
- 5 Stock up food supplies for use during/after a cyclone.
- 6 Keep a battery operated radio to listen to broadcasts regarding the cyclone.
- 7 If the house is in a flood prone area, move to higher ground before flooding occurs
- 8 If the house is in an area known to cause mudslides, vacate house and move to firm ground.

F7.2.3 Precautions against fire

- 1 Where a fire service is available keep their telephone number handy.
- 2 Discuss with family members the appropriate sequences of action in case a fire should occur. Discuss scenarios such as what to do if there is a fire in the kitchen or a bedroom and how to prevent the occurrence of such fires. Also determine common assembly spot after escaping.
- **3** Keep the house and yard tidy. Do not allow tall grass and shrubs to grow close to any combustible facing of walls etc.
- 4 Store liquid fuels in small quantities in air-tight containers and clearly label them. Many serious fires have occurred by the mistaken use of lawn mower fuel in kerosene stoves.
- 5 Keep matches out of reach of children.
- 6 Do not ever smoke in bed.
- 7 Check electrical appliances periodically. If there are any kinks, frayed ends, cracked/cut insulation, etc; replace immediately. Discoloured switches and sockets may indicate faults. If hot to touch they are faulty. Get them checked/ replaced.

F7.2.4 In the event of a fire

- 1 Where there is a fire service call them promptly.
- 2 Alert others around you.
- **3** Evacuate the house and assist others. Assemble at a pre-arranged open area. This will help to check that all those present have escaped.
- 4 With any fat-fire or fire in a sauce pan, cover with a lid. Do not try to carry it outside. With oil and fat fires do not use water to put them out.
- 5 With electrical fires, switch off and disconnect any plug. Do not use water to put them out.
- 6 If smouldering fire is discovered in any mattress or cushion etc: try to remove it outdoors and douse with plenty of water.
- 7 If caught in smoke, get close to the floor and crawl to escape. Inhaling any smoke will quickly disorient/incapacitate a person and lead to fatality.
8 If unable to escape from fire outside a room, plug all cracks/crevice/openings with wet blanket or clothing and stay close to the floor. If water is available, keep the floor wet.

F7.3 Warning against unsafe practices

Some methods of construction and some actions of residents could endanger lives or result in damage. These are listed in the form of prohibitions.

A1.1.1 Construction phase

- 1 Do not flatten roofing sheets when hammering nails or driving screws.
- 2 Do not leave gaps or allow slackness between joints and connections. Make all connections tight.
- 3 Do not use clouts on metal connectors.
- 4 Do not use undersized members or connectors.
- 5 Do not use nail plates on only one side of a truss.
- 6 Do not punch holes in metal straps with a nail or other sharp object. These tear far more quickly than straps with holes pre-punched by the manufacturer.
- 7 Do not use any other brand of preformed metal connectors if a particular brand is specified.
- 8 Do not build a low-set house in an area known to be flood-prone.
- 9 Do not rely only on skew nailed joints.
- 10 Do not nail metal straps in one line; stagger the nails.
- 11 Do not leave loose debris near buildings.
- 12 Do not leave wide gaps in window shutters.
- 13 Do not use untreated timber for external use.

In the event of a cyclone

- 14 Do not stand near glazed openings during a cyclone.
- 15 Do not wander out after the cyclone. The lull may be temporary. Wait for radio announcement.
- 16 Do not go near broken down power lines.

In the event of a fire

- 17 Do not use the lift, if in a high-rise building at the time.
- 18 Do not return to the building until the all clear signal is given.
- 19 Do not use a hose reel on an electrical or oil/fat fire.
- 20 Do not run from the building, walk quickly instead to a safer place.
- 21 DO NOT GO SIGHTSEEING IN THE EVENT OF ANY OF THE ABOVE.

F8 WHAT CAN GO WRONG IN A CYCLONE AND WHAT TO DO

FIGURE F8.1: STRONG WINDS WILL BLOW HOUSES OFF THEIR FOUNDATIONS

FIGURE F8.2: WINDS WILL BLOW AWAY THE ROOF SHEETING

FIGURE F8.3: POORLY BRACED AND JOINTED HOUSES WILL BREAK UP

FIGURE F8.4: DO NOT DEPEND ON THE NAILS ALONE TO KEEP YOUR ROOF UNLESS YOU HAVE USED SPECIAL PURPOSE ANCHOR NAILS OR SCREWS BOTH WITH CYCLONE WASHERS

FIGURE F8.5: USE GALVANISED PRE-DRILLED METAL STRAPS LIKE THESE OR USE NO. 8 WIRE TO FIRMLY TIE UP JOINTS

FIGURE F8.7: BUILD YOUR HOUSE ON A FIRM SITE

FIGURE F8.8: CUT INTO EARTH IF YOU BUILD A HOUSE ON A STEEP SLOPE

FIGURE F8.9: IT IS UNWISE TO BUILD A HOUSE ON A STEEP SLOPE

FIGURE F8.10: IF THE SUPPORTS ARE NOT BRACED, THE HOUSE CAN BE BLOWN OFF ITS SUPPORTS

FIGURE F8.11: BRACE THE SUPPORTS AS SHOWN AND TIE DOWN

FIGURE F8.12: TIE YOUR HOUSE PROPERLY TO THE POSTS

FIGURE F8.13: HOUSE THAT IS NOT PROPERLY TIED DOWN WILL BLOW OFF THE POSTS

FIGURE F8.14: USE METAL STRAPS AND BOLTS TO TIE THE HOUSE TO THE POSTS

FIGURE F8.15: WALLS MUST BE BRACED IN THE CORNERS

FIGURE F8.16: USE A DRAGON TIE TO BRACE EXTERNAL WALLS

152

FIGURE F8.17: GLASS WINDOWS AND DOORS WILL BREAK DURING A CYCLONE

FIGURE F8.18: PROTECT ALL GLASS WINDOWS AND DOORS WITH PROPER CYCLONE SHUTTERS

FIGURE F8.19: OVERHANGS MUST BE AS SHORT AS IS NECESSARY

FIGURE F8.21: ANCHOR STARTER BARS INTO FOOTING. PROVIDE ADEQUATE LAP LENGTH FOR REINFORCEMENT. GROUT AROUND BARS FULLY

F9 BRACING AND CONNECTIONS

FIGURE F9.1: BRACE WALLS AND SUB-FLOOR TO AVOID FAILURE DUE TO HORIZONTAL FORCES

FIGURE F9.2: MAKE SURE THAT ALL JOINTS IN A VERTICAL STRENGTH CHAIN ARE PROPERLY CONNECTED

G1 WINDOW SHUTTERS

G1.1 General

All windows MUST be protected from flying debris during cyclones by means of shutters. Figure G1.1 shows two different types of shutters that can be used to protect windows from flying debris. Timber used to construct the shutters must be of a fairly good quality and must not contain too many knots and other detects.

Shutters in front of glass windows or doors not only protect the glass from flying debris, but shield the glass to some extent from the pressure of the wind. Preventing the glass from breaking will stop the sudden rush of wind inside which could result in the explosive break-up of the house. Shutters must be firmly fixed in place when a cyclone warning is issued. They must be stored in a proper manner if they are not permanently fixed in place. If shutters are stored during non-cyclonic periods, it would help to number them with the windows also match-marked. This would allow prompt and correct installation of the shutters once a cyclone warning is received.

G1.2 Impact test for Shutters

Shutters must be so constructed as to resist impact by a 4 kg piece of timber of 100 mm x 50 mm cross-section, striking it at any angle at a speed of 15 m/s.

G1.3 Timber framed doors

In cyclonic areas, all glazed doors must be protected by means of shutters that pass the test given in Clause G1.2. A better and more-simpler way is to have timber-framed doors which do not have any glass area. Figure G1.3 shows typical details of timber-framed doors and various types of hinges.

G2 LEAN-TO HOUSES

G2.1 General

Lean-to houses are fully-enclosed houses with monoslope (single-slope) roofs.

G2.2 Design

The design of lean-to houses is the same as the design of gable-ended roof houses.

G2.3 Application

- **1** Select the table that corresponds to the member under consideration.
- 2 From the options available, select the correct sizes of members.

FIGURE G2.1: LEAN-TO BUILDING

G3 LEAN-TO GARAGE DETAILS

G3.1 Member sizes for garages

1 Pu	rlins:	@ 1200 mm n	naximum centres
F4		75 x 50	
2 Ra	fters:	@ 1200 mm n	naximum centres
F4		150 X 50	
F5	-F8	125 X 50	
3 Be	ams: F4-F8		125 X 75
4 Pc	osts	100 X 100	

G3.2 Tie-down details

- 1 Cladding/Purlins: Nail on every crest
- 2 Purlin/RafterStrap with 3/3.15f nails per leg
- Rafter/Beams
 Strap rafter to beam with 30 x 0.8 G.I. strap with 3/3.15 f, nails per leg.
- Beam/Post
 Tie-down beam to post with 2/M12 bolt and 50 x 6 mm M.S. plate on both sides.
- 5 Post/Footing

Tie post to footing with 2/M12 bolts with 50 x 8 mm M.S. stirrups - refer to Figure

FIGURE G3.1: LEAN-TO GARAGE CROSS-SECTION

FIGURE G3.2: LEAN-TO GARAGE PLAN AND ELEVATIONS

G4 DETAIL OF STEPS

FIGURE G4.1: DETAIL OF TIMBER STEPS

G5 WINDOW GLASS THICKNESS FOR HOUSES

G5.1 Scope

The minimum required thickness and maximum allowable areas for window glass for use in houses are given.

The details do not provide for safety against human impact. The glass considered is ordinary window glass.

G5.2 Determination of area of glass

ALLOWABLE AREA	OFGLASS	SUPPORTE	DON ALL FO	OUR EDGES	Ê.
Glass Thickness (mm)	3	4	5	5.5	6
Allowable area (mm ²)	0.60	1.05	1.60	1.85	2.25

TABLE G5.1

G5.3 Determination of length of glass

TABLE G5.2

ALLOWABLE SPANS C	F GLASS SI	UPPORTED	ON TWO OP	POSITE EDO	GES
Glass Thickness (mm)	3	4	5	5.5	6
Allowable span (mm)	0.29	0.39	0.50	0.54	0.60

G5.4 Maximum lengths for louvre blades of clear and patterned glass

TABLE G5.3

Nominal thickness of glass	Maximum blade length (mm)			
(mm) ·	Less than 100 wide	100 to 155 wide	155 to 225 wide	
3	400	500		
4	500	600	•	
5	600	750	750	
5.5	650	900	900	
6	750	900	900	

* Not to be used in this thickness

G6 RETAINING WALLS

G6.1 Scope

Some standard design details for reinforced concrete masonry retaining walls are given. Professional engineering advice must be sought where loading conditions or soil types are likely to be outside the limits shown.

G6.2 Retaining wall types

TYPE 1: Is used when the allotment is below the level of a neighbouring property and is to be built as close as possible to the boundary.

TYPE 2: Is used when filling against a neighbouring boundary.

G6.3 Construction methods

Construction without supervision.

The work is carried out by competent tradesmen and is self-supervised.

G6.4 Material specifications

Concrete for footings Concrete must be to grade 17.5 MPa.

Grout Concrete for grout must have a minimum compressive strength of 17.5 MPa.

Mortar for laying blocks Mortar for laying blocks must have a minimum compressive strength of 12.5 MPa.

Reinforcing steel Reinforcing steel must be deformed mild steel bars of 275 MPa grade.

G6.5 Limitations

- **1** The walls are not designed against forces from heavy equipment or large vehicles on the retained soil but allows for light traffic such as passenger cars.
- **2** A drainage layer of suitable granular material must be provided at the back of the wall with a perforated pipe at the base discharging to the open.
- **3** Surface water must be prevented from accumulating at the wall and overloading the drainage system.
- 4 Soil behind retaining wall has been assumed to be firm clay.

FIGURE G6.1: TYPE 1 RETAINING WALL

FIGURE G6.2: TYPE 2 RETAINING WALL

FIGURE G6.3: REINFORCEMENT DETAILS FOR TYPE 1 RETAINING WALLS

# fill all ce		200	150	WALL	TABLE G6.2		200	
alls	1500	1200	1200	HEIGHT (mm)		1500	1200	
roment	D16 - 600	D12 - 600	D16 - 600 #	VERTICAL REINFORCEMENT	ТҮР	D16 - 600	D12-6þ0	
	D12 - 600	D12 - 600	D12 - 600	HORIZONTAL REINFORCEMENT	E 2 RETAINING V	D12 - 600	D12-600	
	875	700	700	WIDTH OF FOOTING (L) (mm)	NALL - WITH AL	1450	1100	
	80	80	80	DEPTH OF KEY (K) (mm)	LOWANCE F	Ì75	88	
	:	:	**	TRÀNSVERSE FOOTING REINFORCEMENT	OR LIGHT TRAFFIC	:		
	D16 - 300	D16 - 300	D12 - 300	LONGITUDINAL FOOTING REINFORCEMENT		D16-300	D16 - 300	
	D12 - 300	D12 - 300	D12-300	KEY REINFORCEMENT		D12-400	D12 - 400	

TABLE G6.1

TYPE 1

RETAINING WALL - WITH ALLOWANCE FOR LIGHT TRAFFIC

WALL

HEIGHT

(mm)

REINFORCEMENT

REINFORCEMENT HORIZONTAL

FOOTING (L)

DEPTH OF (mm)

(mm)

REINFORCEMENT FOOTNG

LONGITUDINAL FOOTING REINFORCEMENT

REINFORCEMENT

REY

VERTICAL

150

1200

D16 - 600 #

D12-600

1200

8

* *

D12 - 300

D12-400

as for vertical reinforcement

G7 DRIVEWAY CONSTRUCTION DETAILS

SECTION A-A

NOTES:

- i. S play to be 1500 x 1500 for kerb height greater than 200 mm.
- ii. Concrete to be to grade 25 MPa.
- iii. All dimensions in millimetres.

G8 REINFORCEMENT BAR DETAIL

TABLE G8.1:

EQUIVALENT BAR DIAMETERS METRIC/IMPERIAL

Imperial	Metric
1/4*	D6
3/8"	D10
#4	D12
#5	D16
#6	D20

TABLE C8.2:

HOOK AND COG ALLOWANCES FOR BENT BARS AND FITMENTS

BARSIZE	DIMENSIONS (mm)			
(mm)	r	a	b	
12	30	70	180	
16	40	70	300	
20	50	80	400	
24	60	100	580	

TABLE G8.3:

MINIMUM LAP LENGTH (MM) FOR DEFORMED BARS IN COMPRESSION

BARSIZE (mm)	LAP LENGTH (mm)
12	400
16	400
20	450
24	550
28	650
32	725

G9 LOW - LIFT METHOD OF GROUTING

H1 LIMITATIONS

MAXIMUM BUILDING HEIGHT 2700

MINIMUM BUILDING HEIGHT 2400

BUILDING WIDTH 5100

BUILDING LENGTH 4800

External and internal walls may be of either timber or masonry construction; however, all walls in a house to this design must wholly be of either and not a combination of the two.

H2 PLAN

FIGURE H2: PLAN AND DIMENSIONS OF HOUSE

H3 ELEVATIONS

SOUTH ELEVATION

NORTH ELEVATION

EAST ELEVATION

WEST ELEVATION

H4 FOUNDATION DETAILS

FIGURE H4.1: EXTERNAL WALL FOOTING

FIGURE H4.2: INTERNAL WALL FOOTING

FIGURE H4.3: FOOTING PLAN

H5 BRACING

FIGURE H5.1: TYPICAL KNEE BRACING DETAIL FOR ALL CORNERS OF WALL - ELEVATION

FIGURE H5.2: ROOF BRACING - PLAN

H6 MISCELLANEOUS

FIGURE H6.1: OUTRIGGER DETAIL

FIGURE H6.3: ELECTRICAL WIRING LAYOUT

WALL LENGTH (L) (mm) WALL LENGTH (L) (mm) 2400 5.3 2400 11.0 4.6 40 3.6 3.2 12.8 9.6 8.5 1.7 Bracing capacity of wall system (kN) Bracing capacity of wall system (kN) CUT ALONG THIS LINE CUT ALONG THIS LINE FIGURE B9.4.3 (D) FIGURE B9.4.3 (B) 1200 1200 5.3 4.6 4.0 3.2 2.0 3.6 1.7 1.5 10 6.1 WALL HEIGHT (H) (mm) WALL HEIGHT (H) (mm) 2100 2400 ≤1800 2700 3000 2100 ≤ 1800 2700 2400 3000 -WALL LENGTH (L) (mm) WALL LENGTH (L) (mm) 8.0 2.0 6.0 2400 2400 4.8 5.3 5.3 4.0 4.6 3.6 32 Bracing capacity of wall system (kN) Bracing capacity of wall system (kN) CUT ALONG THIS LINE FIGURE B9.4.3 (C) CUT ALONG THIS LINE FIGURE B9.4.3 (A) 1200 1200 20 2.0 1.5 1.2 1.5 10 1.7 1.7 1.3 1.3 WALL HEIGHT (H) (mm) WALL HEIGHT (H) (mm) ≤ 1800 2100 2700 2400 3000 2100 ≤ 1800 2400 2700 3000

Please correct your copy of the Home Building Manual by cutting and pasting the following corrections.

H7 MEMBER SIZES (ALL IN MILLIMETRES)

H7.1 Roof

	Cladding:	Lightweight (e.g. sheet roof cladding)				
	Rafters:	Stress grades:	F4	F5-F8		
		Call dimensions:	150 X 50	1 25 X 50		
		Spacing (mm):	900			
	Beams:	Stress grades:	F4	F5-F8		
		Call dimensions:	200 X 75	175 X 75		
	Purlins:	Not required				
H7.2 Timber framed walls						
	Top plate:	50 X 100				
	Bottom plates:	50 X 100				

Noggings:	50 X 100		
Internal wall studs:	Call dimensions:	100 X 40	
	Spacing (mm):	600	
Studs:	Stress grades:	F4-F7	F8
	Call dimensions:	100 X 75	100 X 50

If the external wall is of timber construction then the internal walls must also be of timber construction for the bedroom.

H7.3 Masonry walls

1 50 mm partially reinforced masonry blockwall

Vertical Reinforcement:	D 12 @ 800 mm centres
Horizontal Reinforcement:	4 D 12 bars in 150 x 400 concrete bond beam at top and bottom of wall
Lintel:	150 x 200 concrete or masonry with 2 D 12 bars
	R6 ties @ 600 mm centres
Intermediate bond beam:	Not required

If the external wall is of masonry construction then the internal walls must also be of masonry construction for the bedroom.

H7.4 Other wall types

Corrugated iron roofing sheets may be used for external wall cladding of houses to this design. However the noggings must be spaced no further than 900 mm. Alternate troughs must be fastened to the noggins with 40×3.75 f nails with large washers. The internal walls for the bedroom must be of timber or masonry construction.

Houses constructed to this detail will also satisfy the limitations given at Clause H1 at page H-1.

H7.5 Floor

Slab on ground.

100 mm thick slab on compacted granular fill reinforced with F62 (665) mesh or D10 bars at 350 mm centres both ways. Refer to Figures H4.1 and H4.2 for details.

H7.6 Corner bracing of walls

Knee brace every corner of wall with either 150 x 25 timber brace or 30 x 0.8 galvanised straps as shown in Figure H5.1.

H7.7 Roof bracing

150 x 25 timber braces or 30 x 0.8 galvanised straps or suitable proprietary product as shown in Figure H5.2.

H8 TIE-DOWN

H8.1 Cladding to rafter

Nail every crest of cladding within 1200 mm of roof edges. Nail every alternate crest in other areas. In cyclonic winds, damage is expected to occur to sheet metal cladding if nails are used. To avoid this load spreading, washers in conjunction with nails must be used or use Type 17 No 14 hot dip galvanised screws with load spreading washers.

NOTE: Load spreading washers for nails are manufactured by Hylton Parker (Pty) Ltd. NZ.

H8.2 Rafter to wall

Use 30 x 0.8 G.I looped strap with 6/3.15 f nails each end of strap. Refer to Figure H8.2.

H8.3 Top plate to stud

Use 30 x 0.8 G.I. strap with 6/3.15 f, nails at each end of strap. Refer to Figure H8.3.

88.4 HB.4 Bottom plate to foundation

Bottom plate must be bolted to the footing at 900 mm centres as shown in Figure H8.4.

H8.5 HB.5 Beams to studs

75 x 8 mm M.S saddle bolted to double studs with 1 M12 bolt as shown in Figure H8.5.

NOTE: Beam must be supported on double studs. Studs must be nailed together with 100 x 4.5

FIGURE H8.1 FIXING OF CLADDING TO RAFTER

FIGURE H8.3: FIXING OF STUD TO TOP AND BOTTOM PLATE

FIGURE H8.4: FIXING BOTTOM PLATE TO FOOTING

FIGURE H8.5: FIXING BEAM TO STUD

APPENDIX I—DESIGN CRITERIA

1 GENERAL

The calculations in this manual have been based on the following codes:

(a) The design loads contained in NZS 4203: General Structural Design and Design Loadings for Buildings, Sections 1 and 2

- (b) The wind loads contained in AS 1170 Part 2, Wind Forces, Sections 1 and 3
- (c) AS1 720, SAA Timber Structures Code, Part 1 1988 edition
- (d) NZS 4230(P) Design of Masonry Structures
- (e) NZS 4229 Code of practice for MASONRY BUILDINGS not requiring specific design.

2 DERIVATION OF DESIGN WIND LOADS

The wind loads used in the preparation of this manual have been derived from the Australian Wind Loading Code, AS 1170 Part 2, 1989. Sections 1 and 3 have been used to calculate the design windspeeds that act on the building.

2.1 Design WIndspeed

The design windspeed is derived by multiplying the basic windspeed for permissible stress methods by the various multiplying factors for terrain category, shielding, topography and structure importance.

 $V_z = V_p \times M_{(z,cat)} \times M_s \times M_t \times M_i$

where:

 V_z = the design wind gust speed at height z, in metres per second

V_p = the basic windspeed for permissible stress methods

 $M_{(z,cat)}$ = a gust windspeed multiplier for a terrain category at height z

M_s = a shielding multiplier

M_t = a topographic multiplier for gust wind speeds

M_i = a structure importance multiplier

2.2 Multiplying Factors

(a) Terrain and Structure Height Multiplier (M_(z,cat))

The terrain and structure height multiplier has been derived from Table 3.2.5.1, AS 1170 Part 2 1989, based on terrain category 2.

(b) Shielding Multiplier (M_s)

The shielding multiplier has been assumed to be 1.0.

(c) Topographic Multiplier (M_t)

The value for topography has been based on an escarpment with an upwind slope of 1:10.

(d) Structure Importance Multiplier (M_i)

It has been assumed that this manual will be used for construction of normal houses. As such a structure importance multiplier of 1.0 has been used throughout.

2.3 Dynamic Wind Pressures

 $q_z = 0.6 \times V_z^2 / \times 10^{-3}$

where: q_z = the free stream gust dynamic wind pressure at height, z, in kilopascals

 V_z = the design gust windspeed at height z, in metres per second.

2.4 External Pressure Coefficient (Cpe)

These are derived from Tables 3.4.3.2, 3.4.3.2(B), and 3.4.3.2(C) for roofs. For walls these are derived

from Tables 3.4.3.1, 3.4.3.1 (B), and 3.4.3.1 (C). (All tables from AS 1170 Part 2).

2.5 Internal Pressure Coefficient (Cp)

Internal pressure coefficient has been taken as + 0.3.

APPENDIX II-EXAMPLES

1 CALCULATION OF BRACING WALL REQUIREMENTS

Building Geometry and Site Conditions

Length: 10 m

Width: 8 m

Height: 6 m

Roof Pitch: 10° for wind direction "A" and 0° for direction "B" (see figure below)

2 STRESS GRADES OF LOCALLY AVAILABLE TIMBERS IN COOK ISLANDS PINE (SEASONED) F8 No 1 framing PINE (SEASONED) No 2 framing F7 З JOINT GROUPS OF LOCALLY AVAILABLE TIMBERS IN COOK ISLANDS PINE (SEASONED) JD4 PINE (UNSEASONED) J4 LIST OF REFERENCES 1. AS 1170.2 (1989) SAA Loading Code - Wind loads 2. AS 1684 (1979) SAA Timber Framing Code З. AS 1720.1 (1988) SAA Timber structures code - Design methods 4. AS 2858 (1986) Timber - Softwood - Visually graded for structural purposes 5. AS 2878 (1986) Timber - classification into strength groups 6. NZS 3101 (1982) The design of concrete structures 7. NZS 3108 (1983) Concrete production - ordinary grade 8. NZS 3422 (1975) Welded fabric of drawn steel wire for concrete reinforcement 9. NZS 4203 (1984) General structural design and design loadings for buildings 10. NZS 4210P (1981) Masonry buildings - Materials and workmanship NZS 4223 (1989) 11. Glazing in buildings Concrete masonry buildings not requiring specific design 12 NZS 4229 (1986) 13. NZS 4230P (1985) The design of masonry structures 14. Queensland timber framing manual (1987), TRADAC 15. New Zealand concrete masonry manual (1986), Cement and Concrete Association of NZ

- 16. Basic guide to concrete construction (1985), Cement and Concrete Association of Aust.
- 17. Low rise domestic and similar framed structures, part 1 Design criteria (1978), CSIRO
- 18. Fiji Pine code of practice for light timber buildings not requiring specific design (1985)Dept. of Forestry, Fiji

APPENDIX III—TIMBER CLASSIFICATION

1 JOINT GROUPS

Pieces of timber are allocated Joint groups (see Terms and Definitions) to designate their structural properties at mechanical joints. The smaller the numerical value of a joint group rating, the greater its joint strength. For example a joint group rating of J2 indicates stronger joint properties than a rating of J3 or J4.

When a joint consists of pieces of timber with different joint group ratings, generally the timber with the lowest rating determines the rating of the joint as a whole. However the manner in which the forces are transmitted through the joint must also be taken into consideration. The examples in Figure 1-1 illustrate this.

Joint Group (J, JD rating) is based on this member as Design Strength is controlled by the nails working in shear.

Joint Group (J, JD rating) to be based on the weaker of either member as Design Strength is controlled by shear or bearing of the bolt in both members.

Joint Group (J, JD rating) is based on this member as Design Strength is controlled by the shank of the nail or screw in withdrawal. (This assumes that no prior failure occurs in bearing of the screw or nail head against the timber piece on top).

Joint Group (J, JD rating) is based on the weaker of either member as the Design Strength is controlled by the nails or screws in shear in both members.

Joint Groups (J, JD rating) is based on the weaker of either member as the Design Strength is controlled by the nails in both members.

NOTE: Arrows to the left indicate the direction of load.

FIGURE 1-1: ILLUSTRATIONS OF JOINT GROUPS

