

Guidance for Managing Sea Level Rise Infrastructure Risk in PIC

24/01/2022

Pacific Region Infrastructure Facility

Agenda

- Background to the PRIF TA
- Stocktake on climate change assessment
- Summary of the latest IPCC 6th Assessment
- Revised sea level projections for the PICs
- Adaptative planning for sea level rise
- Transitional guidance
- Summary

"Recent changes in the climate are widespread, rapid, and intensifying, and unprecedented in thousands of years."

Human influence has warmed the climate at a rate that is unprecedented in at least the last 2000 years

Changes in global surface temperature relative to 1850-1900

Human influence has warmed the climate at a rate that is unprecedented in at least the last 2000 years

Changes in global surface temperature relative to 1850-1900

Pacific Region Infrastructure Facility

Human influence has warmed the climate at a rate that is unprecedented in at least the last 2000 years

°C °C 2.0 2.0 Warming is unprecedented in more than 2000 years 1.5 1.5 for the man 1.0 1.0 0.5 0.5 0.0 0.0 -0.5 -0.5 -1 1 500 1000 1500 1850 2020 1850 1900 1950 2000 2020

Changes in global surface temperature relative to 1850-1900

PIC Sea level rise trends

Pacific Region Infrastructure Facility

Stocktake – what is new?

- Partial release of AR6
- New set of projection scenarios
- New baselines (1995-2014)
- More emphasis on uncertainty
- Refined estimates via CMIP model ensemble
- Greater emphasis on regional information

Since AR5

"Unless there are immediate, rapid, and large-scale reductions in greenhouse gas emissions, limiting warming to 1.5°C will be beyond reach."

"There's no going back from some changes in the climate system..."

Ocean and ice sheets

Ocean temperature

Increasing

Greenland & Antarctic Ice Sheets

Melting

Sea level

Rising

Pacific Region Infrastructure Facility

Photo Credits from left: NOAA; Konrad Steffen; Allan Grinberg

Global Sea Level Rise

Projected global mean sea level rise under different SSP scenarios

Regional Sea Level Rise

Regional sea level change at 2100 for different scenarios (with respect to 1995-2014) SSP1-1.9 median change SSP2-4.5 median change SSP5-8.5 median change (a) (c) (e) 0.4 0.6 1.2 -0.2 0 0.2 0.4 0.6 0.8 1.2 -0.2 0 0.2 0.4 0.6 0.8 1.2 1.4 -0.2 0 0.2 0.8 1 1.4 1 1.4 1 (m) (m) (m) SSP3-7.0 uncertainty SSP1-2.6 median change SSP3-7.0 median change (span of likely range) (b) (d) (f) 1.2 0.4 0.6 0.8 1.2 -0.2 0 0.2 0.4 0.6 0.8 1 0.2 0.6 -0.2 0 0.2 1 1.4 1.4 0 0.4 0.8 (m) (m) (m)

PIC Sea Level Projections

Managing Risk

Adaptative Planning Framework

- Incorporates uncertainty and risk with the community at the centre of decision making
- Defines ways forward (pathways) despite uncertainty
- Remaining responsive to change (dynamic)

Responses to Sea Level Rise

Majuro – RMI (Pacific Resilience Programme PREP II)

Pacific Region Infrastructure Facility

Adaptative Planning Framework – Step 1

Required Inputs

Data	Derived information	Use
GIS Infrastructure Type and location	GIS spatial information of infrastructure type, extent, and location	 Mapping to define risk exposure Quantification of vulnerability Development of adaptation options
Sea level record	-Tidal elevations -Storm surge -Sea level maxima -Establishment of datums	 Land-sea boundary definition Boundary conditions or calibration data for numerical models Component of probabilistic sea level analysis
LIDAR Topography and Bathymetry	Land and seabed levels	 Input for hydrodynamic numerical models Geographic information system hazard mapping Definition of coastal features
Aerial photography	Maps	 Shoreline and land use change
Wave record	Wave height period and direction	 Boundary conditions or calibration data for numerical models Extreme wave frequency-magnitude distribution Input to empirical wave setup and runup models Monitor wave climate variability and climate change effects on waves
Beach profile records	Beach slope, position, and volume	 Input to wave setup and run up models Input to beach erosion models and validation of post storm effects.
Historical storm tide and elevation	Coastal hazard markers and elevation	• Verification data for coastal storm inundation and beach erosion models.
Meteorology	Wind velocity, air pressure and rainfall	 Input to hydrodynamic or empirical storm surge and wave models
Sediment composition	Sediment grain size	Beach erosion models
Piezometer	Ground water levels	 Groundwater level and salinity response to sea level change.

Transitional Guidance

Planning	Category	Description	Minimum Transitional Response
	A	Coastal subdivision, greenfield developments, and major new infrastructure.	Avoid risk and apply median <i>Very High Emissions</i> – <i>Low Confidence</i> scenario (SSP5–8.5 H+) with a 100-year planning timeframe.
	В	Changes in land use and redevelopment including intensification.	Adapt to hazards by conducting risk assessment using the range of median <i>Intermediate</i> to <i>Very High</i> <i>Emissions</i> scenarios (SSP2–4.5 to SSP5–8.5).
	С	Land use planning controls for existing coastal development and infrastructure planning.	Accommodate risk and apply 83rd percentile of the <i>Intermediate Emissions</i> scenario (SSP2–4.5) with reference to the respective planning timeframe.
	D	Non habitable short-lived assets with a function that needs to be in the coastal zone and is readily adaptable.	Median Intermediate Emissions (SSP2–4.5) projection with reference to respective planning timeframe.

	Consequence of Failure	Description	Importance Level	Minimum Transitional Response
Engineering	Low	Low consequence for loss of human life, or small or moderate economic, social, or environmental consequence.	1	Minor structures (failure not likely to endanger human life. Adopt median <i>Intermediate Emissions</i> (SSP2–4.5) projection considering design life.
	Ordinary	Medium consequence for loss of human life, or considerable economic, social, or environmental consequence.	2	Normal structures not falling into other levels. Adopt median <i>High Emissions</i> (SSP3–7.0) projection considering design life.
	High High consequence for loss of human life, or very great economic, social, or environmental consequence.	3	Major structures and critical infrastructure. Adopt median <i>Very High Emissions</i> (SSP5–8.5) projection considering design life.	
		4	Post disaster structures. Adopt median <i>Very High</i> <i>Emissions</i> (SSP5–8.5 H+) projection considering a minimum design life of 100 years.	

Pacific Region Infrastructure Facility

Adaptative Planning Framework – Step 2

Sea Level Variability

Change in regional extremes

Median Amplification Factor of Extreme Still Water Level by:

- PIC King Tide exceedance (1%) to an average of 31% (14-66%) by 2050.
- 1 in 100 year sea level will be less than a 1 year event by 2050.

Initial Vulnerability Assessment

Initial Sea Level Rise Risk Assessment- Nauru

TA Outcome

- Updated sea level guidance based on AR6
- Provides an approach to start the adaptative management process to manage risk
- Provides base data to inform hazard delineation
- Provides interim guidance to manage risk
- Provides recommendations to progress sea level rise risk assessment

Thank You

SARAFENUA

ONE PEOPLE